These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
528 related articles for article (PubMed ID: 23261695)
41. A sensitive electrochemical aptasensor for ATP detection based on exonuclease III-assisted signal amplification strategy. Bao T; Shu H; Wen W; Zhang X; Wang S Anal Chim Acta; 2015 Mar; 862():64-9. PubMed ID: 25682429 [TBL] [Abstract][Full Text] [Related]
42. A Facile, Label-Free, and Universal Biosensor Platform Based on Target-Induced Graphene Oxide Constrained DNA Dissociation Coupling with Improved Strand Displacement Amplification. Huang Z; Luo Z; Chen J; Xu Y; Duan Y ACS Sens; 2018 Nov; 3(11):2423-2431. PubMed ID: 30335968 [TBL] [Abstract][Full Text] [Related]
43. On-chip FRET Graphene Oxide Aptasensor: Quantitative Evaluation of Enhanced Sensitivity by Aptamer with a Double-stranded DNA Spacer. Ueno Y; Furukawa K; Tin A; Hibino H Anal Sci; 2015; 31(9):875-9. PubMed ID: 26353952 [TBL] [Abstract][Full Text] [Related]
44. 4-(dimethylamino)butyric acid@PtNPs as enhancer for solid-state electrochemiluminescence aptasensor based on target-induced strand displacement. Gan X; Yuan R; Chai Y; Yuan Y; Mao L; Cao Y; Liao Y Biosens Bioelectron; 2012 Apr; 34(1):25-9. PubMed ID: 22387036 [TBL] [Abstract][Full Text] [Related]
45. Determination of free tryptophan in serum with aptamer--comparison of two aptasensors. Yang X; Han Q; Zhang Y; Wu J; Tang X; Dong C; Liu W Talanta; 2015 Jan; 131():672-7. PubMed ID: 25281158 [TBL] [Abstract][Full Text] [Related]
46. Sensitive and homogeneous protein detection based on target-triggered aptamer hairpin switch and nicking enzyme assisted fluorescence signal amplification. Xue L; Zhou X; Xing D Anal Chem; 2012 Apr; 84(8):3507-13. PubMed ID: 22455536 [TBL] [Abstract][Full Text] [Related]
47. An ultrasensitive fluorescent aptasensor for adenosine detection based on exonuclease III assisted signal amplification. Hu P; Zhu C; Jin L; Dong S Biosens Bioelectron; 2012 Apr; 34(1):83-7. PubMed ID: 22382074 [TBL] [Abstract][Full Text] [Related]
48. Highly-sensitive aptasensor based on fluorescence resonance energy transfer between l-cysteine capped ZnS quantum dots and graphene oxide sheets for the determination of edifenphos fungicide. Arvand M; Mirroshandel AA Biosens Bioelectron; 2017 Oct; 96():324-331. PubMed ID: 28525850 [TBL] [Abstract][Full Text] [Related]
49. A universal fluorescent aptasensor based on AccuBlue dye for the detection of pathogenic bacteria. Duan N; Wu S; Ma X; Xia Y; Wang Z Anal Biochem; 2014 Jun; 454():1-6. PubMed ID: 24650583 [TBL] [Abstract][Full Text] [Related]
50. A fluorescent aptasensor for Staphylococcus aureus based on strand displacement amplification and self-assembled DNA hexagonal structure. Cai R; Yin F; Chen H; Tian Y; Zhou N Mikrochim Acta; 2020 Apr; 187(5):304. PubMed ID: 32350613 [TBL] [Abstract][Full Text] [Related]
51. Aptasensor for amplified IgE sensing based on fluorescence quenching by graphene oxide. Hu K; Yang H; Zhou J; Zhao S; Tian J Luminescence; 2013; 28(5):662-6. PubMed ID: 22949376 [TBL] [Abstract][Full Text] [Related]
52. Highly selective and sensitive detection of coralyne based on the binding chemistry of aptamer and graphene oxide. Zhang P; Wang Y; Leng F; Xiong ZH; Huang CZ Talanta; 2013 Aug; 112():117-22. PubMed ID: 23708546 [TBL] [Abstract][Full Text] [Related]
53. Graphene fluorescence switch-based cooperative amplification: a sensitive and accurate method to detection microRNA. Liu H; Li L; Wang Q; Duan L; Tang B Anal Chem; 2014 Jun; 86(11):5487-93. PubMed ID: 24823448 [TBL] [Abstract][Full Text] [Related]
54. A fluorescent aptasensor using double-stranded DNA/graphene oxide as the indicator probe. Xing XJ; Xiao WL; Liu XG; Zhou Y; Pang DW; Tang HW Biosens Bioelectron; 2016 Apr; 78():431-437. PubMed ID: 26655184 [TBL] [Abstract][Full Text] [Related]
55. Fluorometric graphene oxide-based detection of Salmonella enteritis using a truncated DNA aptamer. Chinnappan R; AlAmer S; Eissa S; Rahamn AA; Abu Salah KM; Zourob M Mikrochim Acta; 2017 Dec; 185(1):61. PubMed ID: 29594712 [TBL] [Abstract][Full Text] [Related]
57. A signal-on electrochemical aptasensor for ultrasensitive detection of endotoxin using three-way DNA junction-aided enzymatic recycling and graphene nanohybrid for amplification. Bai L; Chai Y; Pu X; Yuan R Nanoscale; 2014 Mar; 6(5):2902-8. PubMed ID: 24477782 [TBL] [Abstract][Full Text] [Related]
58. Fluorometric determination of agrA gene transcription in methicillin-resistant Staphylococcus aureus with a graphene oxide-based assay using strand-displacement polymerization recycling and hybridization chain reaction. Ning Y; Chen S; Hu J; Li L; Cheng L; Lu F Mikrochim Acta; 2020 Jun; 187(7):372. PubMed ID: 32504215 [TBL] [Abstract][Full Text] [Related]
59. An amplified label-free electrochemical aptasensor of γ-interferon based on target-induced DNA strand transform of hairpin-to-linear conformation enabling simultaneous capture of redox probe and target. Jin H; Gui R; Gao X; Sun Y Biosens Bioelectron; 2019 Dec; 145():111732. PubMed ID: 31577968 [TBL] [Abstract][Full Text] [Related]
60. Functional chimera aptamer and molecular beacon based fluorescent detection of Staphylococcus aureus with strand displacement-target recycling amplification. Cai R; Yin F; Zhang Z; Tian Y; Zhou N Anal Chim Acta; 2019 Oct; 1075():128-136. PubMed ID: 31196418 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]