BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 23261747)

  • 1. Solubility of amphotericin B in water-lecithin-dispersions and lecithin-based submicron emulsions.
    Salerno C; Perez S; Monteagudo E; Carlucci A; Bregni C
    Pak J Pharm Sci; 2013 Jan; 26(1):189-93. PubMed ID: 23261747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oil-in-water lecithin-based microemulsions as a potential delivery system for amphotericin B.
    Pestana KC; Formariz TP; Franzini CM; Sarmento VH; Chiavacci LA; Scarpa MV; Egito ES; Oliveira AG
    Colloids Surf B Biointerfaces; 2008 Oct; 66(2):253-9. PubMed ID: 18676122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lecithin/TPGS-based spray-dried self-microemulsifying drug delivery systems: In vitro pulmonary deposition and cytotoxicity.
    Ishak RA; Osman R
    Int J Pharm; 2015 May; 485(1-2):249-60. PubMed ID: 25772421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liquid spray formulations of xibornol by using self-microemulsifying drug delivery systems.
    Cirri M; Mura P; Mora PC
    Int J Pharm; 2007 Aug; 340(1-2):84-91. PubMed ID: 17531411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of cosurfactants and oils on the formation of pharmaceutical microemulsions based on PEG-8 caprylic/capric glycerides.
    Djekic L; Primorac M
    Int J Pharm; 2008 Mar; 352(1-2):231-9. PubMed ID: 18068919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solubilizing potential of submicron emulsions and aqueous dispersions of lecithin.
    Sznitowska M; Dabrowska EA; Janicki S
    Int J Pharm; 2002 Oct; 246(1-2):203-6. PubMed ID: 12270623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Paclitaxel solubility in aqueous dispersions and mixed micellar solutions of lecithin.
    Sznitowska M; Klunder M; Placzek M
    Chem Pharm Bull (Tokyo); 2008 Jan; 56(1):70-4. PubMed ID: 18175978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of oil-in-water microemulsions for the oral delivery of amphotericin B.
    Silva AE; Barratt G; Chéron M; Egito ES
    Int J Pharm; 2013 Oct; 454(2):641-8. PubMed ID: 23726904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quality by design: characterization of self-nano-emulsified drug delivery systems (SNEDDs) using ultrasonic resonator technology.
    Shah RB; Zidan AS; Funck T; Tawakkul MA; Nguyenpho A; Khan MA
    Int J Pharm; 2007 Aug; 341(1-2):189-94. PubMed ID: 17521836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solubilization of poorly water-soluble drugs by mixed micelles based on hydrogenated phosphatidylcholine.
    Rupp C; Steckel H; Müller BW
    Int J Pharm; 2010 Aug; 395(1-2):272-80. PubMed ID: 20580793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of novel oral lipid-based formulations of amphotericin B using an in vitro lipolysis model.
    Ibrahim F; Gershkovich P; Sivak O; Wasan EK; Wasan KM
    Eur J Pharm Sci; 2012 Aug; 46(5):323-8. PubMed ID: 22369857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ascorbyl dipalmitate/PEG-lipid nanoparticles as a novel carrier for hydrophobic drugs.
    Moribe K; Maruyama S; Inoue Y; Suzuki T; Fukami T; Tomono K; Higashi K; Tozuka Y; Yamamoto K
    Int J Pharm; 2010 Mar; 387(1-2):236-43. PubMed ID: 20005934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of the hydrophobic domain in poly(ethylene oxide)-poly(varepsilon-caprolactone) based nano-carriers for the solubilization and delivery of Amphotericin B.
    Falamarzian A; Lavasanifar A
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):313-20. PubMed ID: 20674292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amphotericin B in oil-water lecithin-based microemulsions: formulation and toxicity evaluation.
    Brime B; Moreno MA; Frutos G; Ballesteros MP; Frutos P
    J Pharm Sci; 2002 Apr; 91(4):1178-85. PubMed ID: 11948556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gelatin coated hybrid lipid nanoparticles for oral delivery of amphotericin B.
    Jain S; Valvi PU; Swarnakar NK; Thanki K
    Mol Pharm; 2012 Sep; 9(9):2542-53. PubMed ID: 22845020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the in vitro cytotoxicity among phospholipid-based parenteral drug delivery systems: Emulsions, liposomes and aqueous lecithin dispersions (WLDs).
    Płaczek M; Wątróbska-Świetlikowska D; Stefanowicz-Hajduk J; Drechsler M; Ochocka JR; Sznitowska M
    Eur J Pharm Sci; 2019 Jan; 127():92-101. PubMed ID: 30342174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled poorly soluble drug release from solid self-microemulsifying formulations with high viscosity hydroxypropylmethylcellulose.
    Yi T; Wan J; Xu H; Yang X
    Eur J Pharm Sci; 2008 Aug; 34(4-5):274-80. PubMed ID: 18541418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physical characterization and in vivo pharmacokinetic study of self-assembling amphotericin B-loaded lecithin-based mixed polymeric micelles.
    Chen YC; Su CY; Jhan HJ; Ho HO; Sheu MT
    Int J Nanomedicine; 2015; 10():7265-74. PubMed ID: 26664117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling lipolysis through steric surfactants: new insights on the controlled degradation of submicron emulsions after oral and intravenous administration.
    Wulff-Pérez M; de Vicente J; Martín-Rodríguez A; Gálvez-Ruiz MJ
    Int J Pharm; 2012 Feb; 423(2):161-6. PubMed ID: 22209995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution of benzalkonium chloride into the aqueous phases of submicron dispersed systems: emulsions, aqueous lecithin dispersion and nanospheres.
    Watrobska-Swietlikowska D
    AAPS PharmSciTech; 2019 Dec; 21(1):7. PubMed ID: 31792636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.