BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 23261987)

  • 1. Is transketolase-like protein, TKTL1, transketolase?
    Meshalkina LE; Drutsa VL; Koroleva ON; Solovjeva ON; Kochetov GA
    Biochim Biophys Acta; 2013 Mar; 1832(3):387-90. PubMed ID: 23261987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer modeling of transketolase-like protein, TKTL1, a marker of certain tumor tissues.
    Maslova AO; Meshalkina LE; Kochetov GA
    Biochemistry (Mosc); 2012 Mar; 77(3):296-9. PubMed ID: 22803947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aspartate 155 of human transketolase is essential for thiamine diphosphate-magnesium binding, and cofactor binding is required for dimer formation.
    Wang JJ; Martin PR; Singleton CK
    Biochim Biophys Acta; 1997 Sep; 1341(2):165-72. PubMed ID: 9357955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A δ38 deletion variant of human transketolase as a model of transketolase-like protein 1 exhibits no enzymatic activity.
    Schneider S; Lüdtke S; Schröder-Tittmann K; Wechsler C; Meyer D; Tittmann K
    PLoS One; 2012; 7(10):e48321. PubMed ID: 23118983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic study of the H103A mutant yeast transketolase.
    Selivanov VA; Kovina MV; Kochevova NV; Meshalkina LE; Kochetov GA
    FEBS Lett; 2004 Jun; 567(2-3):270-4. PubMed ID: 15178335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of cysteine 160 in thiamine diphosphate binding of the Calvin-Benson-Bassham cycle transketolase of Rhodobacter sphaeroides.
    Bobst CE; Tabita FR
    Arch Biochem Biophys; 2004 Jun; 426(1):43-54. PubMed ID: 15130781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the Thiamine Diphosphate Enzyme Activation Mechanism: Computational Model for Transketolase Using a Quantum Mechanical/Molecular Mechanical Method.
    Nauton L; Hélaine V; Théry V; Hecquet L
    Biochemistry; 2016 Apr; 55(14):2144-52. PubMed ID: 26998737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of an invariant cofactor-protein interaction in thiamin diphosphate-dependent enzymes by site-directed mutagenesis. Glutamic acid 418 in transketolase is essential for catalysis.
    Wikner C; Meshalkina L; Nilsson U; Nikkola M; Lindqvist Y; Sundström M; Schneider G
    J Biol Chem; 1994 Dec; 269(51):32144-50. PubMed ID: 7798210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding of the coenzyme and formation of the transketolase active center.
    Kochetov G; Sevostyanova IA
    IUBMB Life; 2005 Jul; 57(7):491-7. PubMed ID: 16081370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystallography and mutagenesis of transketolase: mechanistic implications for enzymatic thiamin catalysis.
    Schneider G; Lindqvist Y
    Biochim Biophys Acta; 1998 Jun; 1385(2):387-98. PubMed ID: 9655943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Examination of the thiamin diphosphate binding site in yeast transketolase by site-directed mutagenesis.
    Meshalkina L; Nilsson U; Wikner C; Kostikowa T; Schneider G
    Eur J Biochem; 1997 Mar; 244(2):646-52. PubMed ID: 9119035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The human transketolase-like proteins TKTL1 and TKTL2 are bona fide transketolases.
    Deshpande GP; Patterton HG; Faadiel Essop M
    BMC Struct Biol; 2019 Jan; 19(1):2. PubMed ID: 30646877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New function of the amino group of thiamine diphosphate in thiamine catalysis.
    Meshalkina LE; Kochetov GA; Hübner G; Tittmann K; Golbik R
    Biochemistry (Mosc); 2009 Mar; 74(3):293-300. PubMed ID: 19364324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of donor substrate on kinetic parameters of thiamine diphosphate binding to transketolase.
    Ospanov RV; Kochetov GA; Kurganov BI
    Biochemistry (Mosc); 2007 Jan; 72(1):84-92. PubMed ID: 17309441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutations in the transketolase-like gene TKTL1: clinical implications for neurodegenerative diseases, diabetes and cancer.
    Coy JF; Dressler D; Wilde J; Schubert P
    Clin Lab; 2005; 51(5-6):257-73. PubMed ID: 15991799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of catalytically important residues in yeast transketolase.
    Wikner C; Nilsson U; Meshalkina L; Udekwu C; Lindqvist Y; Schneider G
    Biochemistry; 1997 Dec; 36(50):15643-9. PubMed ID: 9398292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and functioning mechanism of transketolase.
    Kochetov GA; Solovjeva ON
    Biochim Biophys Acta; 2014 Sep; 1844(9):1608-18. PubMed ID: 24929114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Refined structure of transketolase from Saccharomyces cerevisiae at 2.0 A resolution.
    Nikkola M; Lindqvist Y; Schneider G
    J Mol Biol; 1994 May; 238(3):387-404. PubMed ID: 8176731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene silencing of TKTL1 by RNAi inhibits cell proliferation in human hepatoma cells.
    Zhang S; Yang JH; Guo CK; Cai PC
    Cancer Lett; 2007 Aug; 253(1):108-14. PubMed ID: 17321041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical insights of oxythiamine compound as potent inhibitor for human transketolase-like protein 1 (TKTL1 protein).
    Mariadasse R; Biswal J; Jayaprakash P; Rao GR; Choubey SK; Rajendran S; Jeyakanthan J
    J Recept Signal Transduct Res; 2016; 36(3):233-42. PubMed ID: 26481897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.