These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Computer modeling of transketolase-like protein, TKTL1, a marker of certain tumor tissues. Maslova AO; Meshalkina LE; Kochetov GA Biochemistry (Mosc); 2012 Mar; 77(3):296-9. PubMed ID: 22803947 [TBL] [Abstract][Full Text] [Related]
3. Aspartate 155 of human transketolase is essential for thiamine diphosphate-magnesium binding, and cofactor binding is required for dimer formation. Wang JJ; Martin PR; Singleton CK Biochim Biophys Acta; 1997 Sep; 1341(2):165-72. PubMed ID: 9357955 [TBL] [Abstract][Full Text] [Related]
4. A δ38 deletion variant of human transketolase as a model of transketolase-like protein 1 exhibits no enzymatic activity. Schneider S; Lüdtke S; Schröder-Tittmann K; Wechsler C; Meyer D; Tittmann K PLoS One; 2012; 7(10):e48321. PubMed ID: 23118983 [TBL] [Abstract][Full Text] [Related]
5. Kinetic study of the H103A mutant yeast transketolase. Selivanov VA; Kovina MV; Kochevova NV; Meshalkina LE; Kochetov GA FEBS Lett; 2004 Jun; 567(2-3):270-4. PubMed ID: 15178335 [TBL] [Abstract][Full Text] [Related]
6. The role of cysteine 160 in thiamine diphosphate binding of the Calvin-Benson-Bassham cycle transketolase of Rhodobacter sphaeroides. Bobst CE; Tabita FR Arch Biochem Biophys; 2004 Jun; 426(1):43-54. PubMed ID: 15130781 [TBL] [Abstract][Full Text] [Related]
7. Insights into the Thiamine Diphosphate Enzyme Activation Mechanism: Computational Model for Transketolase Using a Quantum Mechanical/Molecular Mechanical Method. Nauton L; Hélaine V; Théry V; Hecquet L Biochemistry; 2016 Apr; 55(14):2144-52. PubMed ID: 26998737 [TBL] [Abstract][Full Text] [Related]
8. Analysis of an invariant cofactor-protein interaction in thiamin diphosphate-dependent enzymes by site-directed mutagenesis. Glutamic acid 418 in transketolase is essential for catalysis. Wikner C; Meshalkina L; Nilsson U; Nikkola M; Lindqvist Y; Sundström M; Schneider G J Biol Chem; 1994 Dec; 269(51):32144-50. PubMed ID: 7798210 [TBL] [Abstract][Full Text] [Related]
9. Binding of the coenzyme and formation of the transketolase active center. Kochetov G; Sevostyanova IA IUBMB Life; 2005 Jul; 57(7):491-7. PubMed ID: 16081370 [TBL] [Abstract][Full Text] [Related]
10. Crystallography and mutagenesis of transketolase: mechanistic implications for enzymatic thiamin catalysis. Schneider G; Lindqvist Y Biochim Biophys Acta; 1998 Jun; 1385(2):387-98. PubMed ID: 9655943 [TBL] [Abstract][Full Text] [Related]
11. Examination of the thiamin diphosphate binding site in yeast transketolase by site-directed mutagenesis. Meshalkina L; Nilsson U; Wikner C; Kostikowa T; Schneider G Eur J Biochem; 1997 Mar; 244(2):646-52. PubMed ID: 9119035 [TBL] [Abstract][Full Text] [Related]
12. The human transketolase-like proteins TKTL1 and TKTL2 are bona fide transketolases. Deshpande GP; Patterton HG; Faadiel Essop M BMC Struct Biol; 2019 Jan; 19(1):2. PubMed ID: 30646877 [TBL] [Abstract][Full Text] [Related]
13. New function of the amino group of thiamine diphosphate in thiamine catalysis. Meshalkina LE; Kochetov GA; Hübner G; Tittmann K; Golbik R Biochemistry (Mosc); 2009 Mar; 74(3):293-300. PubMed ID: 19364324 [TBL] [Abstract][Full Text] [Related]
14. Influence of donor substrate on kinetic parameters of thiamine diphosphate binding to transketolase. Ospanov RV; Kochetov GA; Kurganov BI Biochemistry (Mosc); 2007 Jan; 72(1):84-92. PubMed ID: 17309441 [TBL] [Abstract][Full Text] [Related]
15. Mutations in the transketolase-like gene TKTL1: clinical implications for neurodegenerative diseases, diabetes and cancer. Coy JF; Dressler D; Wilde J; Schubert P Clin Lab; 2005; 51(5-6):257-73. PubMed ID: 15991799 [TBL] [Abstract][Full Text] [Related]
16. Identification of catalytically important residues in yeast transketolase. Wikner C; Nilsson U; Meshalkina L; Udekwu C; Lindqvist Y; Schneider G Biochemistry; 1997 Dec; 36(50):15643-9. PubMed ID: 9398292 [TBL] [Abstract][Full Text] [Related]
17. Structure and functioning mechanism of transketolase. Kochetov GA; Solovjeva ON Biochim Biophys Acta; 2014 Sep; 1844(9):1608-18. PubMed ID: 24929114 [TBL] [Abstract][Full Text] [Related]
18. Refined structure of transketolase from Saccharomyces cerevisiae at 2.0 A resolution. Nikkola M; Lindqvist Y; Schneider G J Mol Biol; 1994 May; 238(3):387-404. PubMed ID: 8176731 [TBL] [Abstract][Full Text] [Related]
19. Gene silencing of TKTL1 by RNAi inhibits cell proliferation in human hepatoma cells. Zhang S; Yang JH; Guo CK; Cai PC Cancer Lett; 2007 Aug; 253(1):108-14. PubMed ID: 17321041 [TBL] [Abstract][Full Text] [Related]
20. Mechanical insights of oxythiamine compound as potent inhibitor for human transketolase-like protein 1 (TKTL1 protein). Mariadasse R; Biswal J; Jayaprakash P; Rao GR; Choubey SK; Rajendran S; Jeyakanthan J J Recept Signal Transduct Res; 2016; 36(3):233-42. PubMed ID: 26481897 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]