These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 23262018)
21. Elemental migration and transformation during hydrothermal liquefaction of biomass. Lu J; Watson J; Liu Z; Wu Y J Hazard Mater; 2022 Feb; 423(Pt A):126961. PubMed ID: 34461542 [TBL] [Abstract][Full Text] [Related]
22. A Comprehensive Hydrothermal Co-Liquefaction of Diverse Biowastes for Energy-Dense Biocrude Production: Synergistic and Antagonistic Effects. Zhang G; Wang K; Liu Q; Han L; Zhang X Int J Environ Res Public Health; 2022 Aug; 19(17):. PubMed ID: 36078216 [TBL] [Abstract][Full Text] [Related]
23. Energy and emission benefits of alternative transportation liquid fuels derived from switchgrass: a fuel life cycle assessment. Wu M; Wu Y; Wang M Biotechnol Prog; 2006; 22(4):1012-24. PubMed ID: 16889378 [TBL] [Abstract][Full Text] [Related]
24. Effect of temperature, water loading, and Ru/C catalyst on water-insoluble and water-soluble biocrude fractions from hydrothermal liquefaction of algae. Xu D; Savage PE Bioresour Technol; 2017 Sep; 239():1-6. PubMed ID: 28500883 [TBL] [Abstract][Full Text] [Related]
25. Hydrothermal liquefaction of harvested high-ash low-lipid algal biomass from Dianchi Lake: effects of operational parameters and relations of products. Tian C; Liu Z; Zhang Y; Li B; Cao W; Lu H; Duan N; Zhang L; Zhang T Bioresour Technol; 2015 May; 184():336-343. PubMed ID: 25466998 [TBL] [Abstract][Full Text] [Related]
26. Waste Sludge: Entirely Waste or a Sustainable Source of Biocrude? A Review. Dhara FT; Fayshal MA Appl Biochem Biotechnol; 2024 Sep; 196(9):5821-5842. PubMed ID: 38236434 [TBL] [Abstract][Full Text] [Related]
27. CO2 abatement costs of greenhouse gas (GHG) mitigation by different biogas conversion pathways. Rehl T; Müller J J Environ Manage; 2013 Jan; 114():13-25. PubMed ID: 23201601 [TBL] [Abstract][Full Text] [Related]
28. Effect of operating conditions on yield and quality of biocrude during hydrothermal liquefaction of halophytic microalga Tetraselmis sp. Eboibi BE; Lewis DM; Ashman PJ; Chinnasamy S Bioresour Technol; 2014 Oct; 170():20-29. PubMed ID: 25118149 [TBL] [Abstract][Full Text] [Related]
29. A review on optimization production and upgrading biogas through CO2 removal using various techniques. Andriani D; Wresta A; Atmaja TD; Saepudin A Appl Biochem Biotechnol; 2014 Feb; 172(4):1909-28. PubMed ID: 24293277 [TBL] [Abstract][Full Text] [Related]
30. Anaerobic digestion of post-hydrothermal liquefaction wastewater for improved energy efficiency of hydrothermal bioenergy processes. Zhou Y; Schideman L; Zheng M; Martin-Ryals A; Li P; Tommaso G; Zhang Y Water Sci Technol; 2015; 72(12):2139-47. PubMed ID: 26676001 [TBL] [Abstract][Full Text] [Related]
31. Hydrothermal liquefaction of freshwater and marine algal biomass: A novel approach to produce distillate fuel fractions through blending and co-processing of biocrude with petrocrude. Lavanya M; Meenakshisundaram A; Renganathan S; Chinnasamy S; Lewis DM; Nallasivam J; Bhaskar S Bioresour Technol; 2016 Mar; 203():228-35. PubMed ID: 26735877 [TBL] [Abstract][Full Text] [Related]
32. Sustainable processing of algal biomass for a comprehensive biorefinery. Javed MU; Mukhtar H; Hayat MT; Rashid U; Mumtaz MW; Ngamcharussrivichai C J Biotechnol; 2022 Jun; 352():47-58. PubMed ID: 35613647 [TBL] [Abstract][Full Text] [Related]
33. Hydrothermal liquefaction of Gracilaria gracilis and Cladophora glomerata macro-algae for biocrude production. Parsa M; Jalilzadeh H; Pazoki M; Ghasemzadeh R; Abduli M Bioresour Technol; 2018 Feb; 250():26-34. PubMed ID: 29153647 [TBL] [Abstract][Full Text] [Related]
34. Combining anaerobic digestion and hydrothermal liquefaction in the conversion of dairy waste into energy: A techno economic model for New York state. Kassem N; Sills D; Posmanik R; Blair C; Tester JW Waste Manag; 2020 Feb; 103():228-239. PubMed ID: 31901605 [TBL] [Abstract][Full Text] [Related]
35. Chemical properties of biocrude oil from the hydrothermal liquefaction of Spirulina algae, swine manure, and digested anaerobic sludge. Vardon DR; Sharma BK; Scott J; Yu G; Wang Z; Schideman L; Zhang Y; Strathmann TJ Bioresour Technol; 2011 Sep; 102(17):8295-303. PubMed ID: 21741234 [TBL] [Abstract][Full Text] [Related]
36. Influence of sward maturity and pre-conditioning temperature on the energy production from grass silage through the integrated generation of solid fuel and biogas from biomass (IFBB): 1. The fate of mineral compounds. Richter F; Fricke T; Wachendorf M Bioresour Technol; 2011 Apr; 102(7):4855-65. PubMed ID: 21320774 [TBL] [Abstract][Full Text] [Related]
37. Integrating electrochemical, biological, physical, and thermochemical process units to expand the applicability of anaerobic digestion. Angenent LT; Usack JG; Xu J; Hafenbradl D; Posmanik R; Tester JW Bioresour Technol; 2018 Jan; 247():1085-1094. PubMed ID: 28964600 [TBL] [Abstract][Full Text] [Related]
38. Biofuels as a sustainable energy source: an update of the applications of proteomics in bioenergy crops and algae. Ndimba BK; Ndimba RJ; Johnson TS; Waditee-Sirisattha R; Baba M; Sirisattha S; Shiraiwa Y; Agrawal GK; Rakwal R J Proteomics; 2013 Nov; 93():234-44. PubMed ID: 23792822 [TBL] [Abstract][Full Text] [Related]
39. A hydrothermal co-liquefaction of spirulina platensis with rice husk, coconut shell and HDPE for biocrude production. Saral JS; Ranganathan P Bioresour Technol; 2022 Nov; 363():127911. PubMed ID: 36089126 [TBL] [Abstract][Full Text] [Related]
40. Machine learning prediction of biocrude yields and higher heating values from hydrothermal liquefaction of wet biomass and wastes. Katongtung T; Onsree T; Tippayawong N Bioresour Technol; 2022 Jan; 344(Pt B):126278. PubMed ID: 34752893 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]