BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 23262022)

  • 1. Effects of temperature and nutrient regimes on biomass and lipid production by six oleaginous microalgae in batch culture employing a two-phase cultivation strategy.
    Roleda MY; Slocombe SP; Leakey RJ; Day JG; Bell EM; Stanley MS
    Bioresour Technol; 2013 Feb; 129():439-49. PubMed ID: 23262022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Triacylglycerol accumulation and change in fatty acid content of four marine oleaginous microalgae under nutrient limitation and at different culture ages.
    Gong Y; Guo X; Wan X; Liang Z; Jiang M
    J Basic Microbiol; 2013 Jan; 53(1):29-36. PubMed ID: 22581481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Screening, growth medium optimisation and heterotrophic cultivation of microalgae for biodiesel production.
    Jia Z; Liu Y; Daroch M; Geng S; Cheng JJ
    Appl Biochem Biotechnol; 2014 Aug; 173(7):1667-79. PubMed ID: 24845038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor.
    Rodolfi L; Chini Zittelli G; Bassi N; Padovani G; Biondi N; Bonini G; Tredici MR
    Biotechnol Bioeng; 2009 Jan; 102(1):100-12. PubMed ID: 18683258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp.
    Wahidin S; Idris A; Shaleh SR
    Bioresour Technol; 2013 Feb; 129():7-11. PubMed ID: 23232218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of colour temperatures in the cultivation of Dunaliella salina and Nannochloropsis oculata in the production of lipids and carbohydrates.
    Pavón-Suriano SG; Ortega-Clemente LA; Curiel-Ramírez S; Jiménez-García MI; Pérez-Legaspi IA; Robledo-Narváez PN
    Environ Sci Pollut Res Int; 2018 Aug; 25(22):21332-21340. PubMed ID: 28741207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature shifts induce intraspecific variation in microalgal production and biochemical composition.
    Sayegh FA; Montagnes DJ
    Bioresour Technol; 2011 Feb; 102(3):3007-13. PubMed ID: 20970325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-EPA Biomass from Nannochloropsis salina Cultivated in a Flat-Panel Photo-Bioreactor on a Process Water-Enriched Growth Medium.
    Safafar H; Hass MZ; Møller P; Holdt SL; Jacobsen C
    Mar Drugs; 2016 Jul; 14(8):. PubMed ID: 27483291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factors affecting the growth and the oil accumulation of marine microalgae, Tetraselmis suecica.
    Go S; Lee SJ; Jeong GT; Kim SK
    Bioprocess Biosyst Eng; 2012 Jan; 35(1-2):145-50. PubMed ID: 22011884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased lipid production of the marine oleaginous microalgae Isochrysis zhangjiangensis (Chrysophyta) by nitrogen supplement.
    Feng D; Chen Z; Xue S; Zhang W
    Bioresour Technol; 2011 Jun; 102(12):6710-6. PubMed ID: 21524571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High productivity cultivation of a heat-resistant microalga Chlorella sorokiniana for biofuel production.
    Li T; Zheng Y; Yu L; Chen S
    Bioresour Technol; 2013 Mar; 131():60-7. PubMed ID: 23340103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioprospecting for oil producing microalgal strains: evaluation of oil and biomass production for ten microalgal strains.
    Araujo GS; Matos LJ; Gonçalves LR; Fernandes FA; Farias WR
    Bioresour Technol; 2011 Apr; 102(8):5248-50. PubMed ID: 21353534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oil production by the marine microalgae Nannochloropsis sp. F&M-M24 and Tetraselmis suecica F&M-M33.
    Bondioli P; Della Bella L; Rivolta G; Chini Zittelli G; Bassi N; Rodolfi L; Casini D; Prussi M; Chiaramonti D; Tredici MR
    Bioresour Technol; 2012 Jun; 114():567-72. PubMed ID: 22459965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Serial optimization of biomass production using microalga Nannochloris oculata and corresponding lipid biosynthesis.
    Park SJ; Choi YE; Kim EJ; Park WK; Kim CW; Yang JW
    Bioprocess Biosyst Eng; 2012 Jan; 35(1-2):3-9. PubMed ID: 21989638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement and modeling of culture parameters to enhance biomass and lipid production by the oleaginous yeast Cryptococcus curvatus grown on acetate.
    Béligon V; Poughon L; Christophe G; Lebert A; Larroche C; Fontanille P
    Bioresour Technol; 2015 Sep; 192():582-91. PubMed ID: 26093252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of BODIPY505/515 lipid fluorescence method for applications in biofuel-directed microalgae production.
    Brennan L; Blanco Fernández A; Mostaert AS; Owende P
    J Microbiol Methods; 2012 Aug; 90(2):137-43. PubMed ID: 22521923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photosynthetic performance, lipid production and biomass composition in response to nitrogen limitation in marine microalgae.
    Jiang Y; Yoshida T; Quigg A
    Plant Physiol Biochem; 2012 May; 54():70-7. PubMed ID: 22387274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistical optimization of culture media for growth and lipid production of Chlorella protothecoides UTEX 250.
    Cheng KC; Ren M; Ogden KL
    Bioresour Technol; 2013 Jan; 128():44-8. PubMed ID: 23196220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration process of biodiesel production from filamentous oleaginous microalgae Tribonema minus.
    Wang H; Gao L; Chen L; Guo F; Liu T
    Bioresour Technol; 2013 Aug; 142():39-44. PubMed ID: 23735788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of oils from acetic acid by the oleaginous yeast Cryptococcus curvatus.
    Christophe G; Deo JL; Kumar V; Nouaille R; Fontanille P; Larroche C
    Appl Biochem Biotechnol; 2012 Jul; 167(5):1270-9. PubMed ID: 22203398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.