These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
325 related articles for article (PubMed ID: 23262058)
1. In silico prediction of the solubility advantage for amorphous drugs - Are there property-based rules for drug discovery and early pharmaceutical development? Kuentz M; Imanidis G Eur J Pharm Sci; 2013 Feb; 48(3):554-62. PubMed ID: 23262058 [TBL] [Abstract][Full Text] [Related]
2. In silico predictions of gastrointestinal drug absorption in pharmaceutical product development: application of the mechanistic absorption model GI-Sim. Sjögren E; Westergren J; Grant I; Hanisch G; Lindfors L; Lennernäs H; Abrahamsson B; Tannergren C Eur J Pharm Sci; 2013 Jul; 49(4):679-98. PubMed ID: 23727464 [TBL] [Abstract][Full Text] [Related]
3. Long-Term Amorphous Drug Stability Predictions Using Easily Calculated, Predicted, and Measured Parameters. Nurzyńska K; Booth J; Roberts CJ; McCabe J; Dryden I; Fischer PM Mol Pharm; 2015 Sep; 12(9):3389-98. PubMed ID: 26236939 [TBL] [Abstract][Full Text] [Related]
4. Amino acids as co-amorphous stabilizers for poorly water soluble drugs--Part 1: preparation, stability and dissolution enhancement. Löbmann K; Grohganz H; Laitinen R; Strachan C; Rades T Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt B):873-81. PubMed ID: 23537574 [TBL] [Abstract][Full Text] [Related]
5. A pH-dilution method for estimation of biorelevant drug solubility along the gastrointestinal tract: application to physiologically based pharmacokinetic modeling. Gao Y; Carr RA; Spence JK; Wang WW; Turner TM; Lipari JM; Miller JM Mol Pharm; 2010 Oct; 7(5):1516-26. PubMed ID: 20715778 [TBL] [Abstract][Full Text] [Related]
6. Systemic in vitro and in vivo evaluation for determining the feasibility of making an amorphous solid dispersion of a B-Raf (rapidly accelerated fibrosarcoma) inhibitor. Cui Y; Chiang PC; Choo EF; Boggs J; Rudolph J; Grina J; Wenglowsky S; Ran Y Int J Pharm; 2013 Sep; 454(1):241-8. PubMed ID: 23834830 [TBL] [Abstract][Full Text] [Related]
8. Rationalizing the selection of oral lipid based drug delivery systems by an in vitro dynamic lipolysis model for improved oral bioavailability of poorly water soluble drugs. Dahan A; Hoffman A J Control Release; 2008 Jul; 129(1):1-10. PubMed ID: 18499294 [TBL] [Abstract][Full Text] [Related]
9. A strategy for preclinical formulation development using GastroPlus as pharmacokinetic simulation tool and a statistical screening design applied to a dog study. Kuentz M; Nick S; Parrott N; Röthlisberger D Eur J Pharm Sci; 2006 Jan; 27(1):91-9. PubMed ID: 16219449 [TBL] [Abstract][Full Text] [Related]
10. An interesting relationship between drug absorption and melting point. Chu KA; Yalkowsky SH Int J Pharm; 2009 May; 373(1-2):24-40. PubMed ID: 19429285 [TBL] [Abstract][Full Text] [Related]
11. Amorphous solid dispersion successfully improved oral exposure of ADX71943 in support of toxicology studies. Ayad MH; Bonnet B; Quinton J; Leigh M; Poli SM Drug Dev Ind Pharm; 2013 Sep; 39(9):1300-5. PubMed ID: 23066824 [TBL] [Abstract][Full Text] [Related]
12. ADME evaluation in drug discovery. 7. Prediction of oral absorption by correlation and classification. Hou T; Wang J; Zhang W; Xu X J Chem Inf Model; 2007; 47(1):208-18. PubMed ID: 17238266 [TBL] [Abstract][Full Text] [Related]
13. Physical stabilization of low-molecular-weight amorphous drugs in the solid state: a material science approach. Qi S; McAuley WJ; Yang Z; Tipduangta P Ther Deliv; 2014 Jul; 5(7):817-41. PubMed ID: 25287388 [TBL] [Abstract][Full Text] [Related]
14. Preclinical dose number and its application in understanding drug absorption risk and formulation design for preclinical species. Wuelfing WP; Daublain P; Kesisoglou F; Templeton A; McGregor C Mol Pharm; 2015 Apr; 12(4):1031-9. PubMed ID: 25671350 [TBL] [Abstract][Full Text] [Related]
15. Selecting oral bioavailability enhancing formulations during drug discovery and development. Leucuta SE Expert Opin Drug Discov; 2014 Feb; 9(2):139-50. PubMed ID: 24387781 [TBL] [Abstract][Full Text] [Related]
16. Practical Approach to Modeling the Impact of Amorphous Drug Nanoparticles on the Oral Absorption of Poorly Soluble Drugs. Stewart AM; Grass ME Mol Pharm; 2020 Jan; 17(1):180-189. PubMed ID: 31743032 [TBL] [Abstract][Full Text] [Related]
17. Development and validation of in silico models for estimating drug preformulation risk in PEG400/water and Tween80/water systems. Crivori P; Morelli A; Pezzetta D; Rocchetti M; Poggesi I Eur J Pharm Sci; 2007 Nov; 32(3):169-81. PubMed ID: 17714921 [TBL] [Abstract][Full Text] [Related]
18. Getting physical in drug discovery: a contemporary perspective on solubility and hydrophobicity. Hill AP; Young RJ Drug Discov Today; 2010 Aug; 15(15-16):648-55. PubMed ID: 20570751 [TBL] [Abstract][Full Text] [Related]
19. Preparation of an amorphous sodium furosemide salt improves solubility and dissolution rate and leads to a faster Tmax after oral dosing to rats. Nielsen LH; Gordon S; Holm R; Selen A; Rades T; Müllertz A Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt B):942-51. PubMed ID: 24075980 [TBL] [Abstract][Full Text] [Related]
20. A win-win solution in oral delivery of lipophilic drugs: supersaturation via amorphous solid dispersions increases apparent solubility without sacrifice of intestinal membrane permeability. Miller JM; Beig A; Carr RA; Spence JK; Dahan A Mol Pharm; 2012 Jul; 9(7):2009-16. PubMed ID: 22632106 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]