These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 23262131)

  • 1. Identification of inhibitors of yeast-to-hyphae transition in Candida albicans by a reporter screening assay.
    Heintz-Buschart A; Eickhoff H; Hohn E; Bilitewski U
    J Biotechnol; 2013 Mar; 164(1):137-42. PubMed ID: 23262131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of licorice compounds licochalcone A, glabridin and glycyrrhizic acid on growth and virulence properties of Candida albicans.
    Messier C; Grenier D
    Mycoses; 2011 Nov; 54(6):e801-6. PubMed ID: 21615543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of Candida albicans biofilm formation and yeast-hyphal transition by 4-hydroxycordoin.
    Messier C; Epifano F; Genovese S; Grenier D
    Phytomedicine; 2011 Mar; 18(5):380-3. PubMed ID: 21353508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The inhibitory activity of linalool against the filamentous growth and biofilm formation in Candida albicans.
    Hsu CC; Lai WL; Chuang KC; Lee MH; Tsai YC
    Med Mycol; 2013 Jul; 51(5):473-82. PubMed ID: 23210679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective damage to hyphal form through light-induced delivery of nitric oxide to Candida albicans colonies.
    Heilman BJ; Tadle AC; Pimentel LR; Mascharak PK
    J Inorg Biochem; 2013 Jun; 123():18-22. PubMed ID: 23501134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of salivary components that induce transition of hyphae to yeast in Candida albicans.
    Leito JT; Ligtenberg AJ; Nazmi K; Veerman EC
    FEMS Yeast Res; 2009 Oct; 9(7):1102-10. PubMed ID: 19799638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boric acid destabilizes the hyphal cytoskeleton and inhibits invasive growth of Candida albicans.
    Pointer BR; Boyer MP; Schmidt M
    Yeast; 2015 Apr; 32(4):389-98. PubMed ID: 25612315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel high-throughput screening method for identification of fungal dimorphism blockers.
    Stylianou M; Uvell H; Lopes JP; Enquist PA; Elofsson M; Urban CF
    J Biomol Screen; 2015 Feb; 20(2):285-91. PubMed ID: 25281739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro effect of DNA topoisomerase inhibitors on Candida albicans.
    Kwok SC; Schelenz S; Wang X; Steverding D
    Med Mycol; 2010 Feb; 48(1):155-60. PubMed ID: 19626543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Inhibitory effects of butyl alcohol extract of Baitouweng decoction on yeast-to-hyphae transition of Candida albicans isolates from VVC in alkaline pH environment].
    Zhang MX; Xia D; Shi GX; Shao J; Wang TM; Tang CC; Wang CZ
    Zhongguo Zhong Yao Za Zhi; 2015 Feb; 40(4):710-5. PubMed ID: 26137695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tetracycline-inducible gene expression and gene deletion in Candida albicans.
    Park YN; Morschhäuser J
    Eukaryot Cell; 2005 Aug; 4(8):1328-42. PubMed ID: 16087738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ocimum sanctum essential oil inhibits virulence attributes in Candida albicans.
    Khan A; Ahmad A; Xess I; Khan LA; Manzoor N
    Phytomedicine; 2014 Mar; 21(4):448-52. PubMed ID: 24252340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 2-dodecanol (decyl methyl carbinol) inhibits hyphal formation and SIR2 expression in C. albicans.
    Lim CS; Wong WF; Rosli R; Ng KP; Seow HF; Chong PP
    J Basic Microbiol; 2009 Dec; 49(6):579-83. PubMed ID: 19810039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antifungal activity and influence of propolis against germ tube formation as a critical virulence attribute by clinical isolates of Candida albicans.
    Haghdoost NS; Salehi TZ; Khosravi A; Sharifzadeh A
    J Mycol Med; 2016 Dec; 26(4):298-305. PubMed ID: 27789229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis.
    Zheng X; Wang Y; Wang Y
    EMBO J; 2004 Apr; 23(8):1845-56. PubMed ID: 15071502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of magnolol and honokiol on adhesion, yeast-hyphal transition, and formation of biofilm by Candida albicans.
    Sun L; Liao K; Wang D
    PLoS One; 2015; 10(2):e0117695. PubMed ID: 25710475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epithelial invasion outcompetes hypha development during Candida albicans infection as revealed by an image-based systems biology approach.
    Mech F; Wilson D; Lehnert T; Hube B; Thilo Figge M
    Cytometry A; 2014 Feb; 85(2):126-39. PubMed ID: 24259441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. β-citronellol alters cell surface properties of Candida albicans to influence pathogenicity related traits.
    Sharma Y; Rastogi SK; Perwez A; Rizvi MA; Manzoor N
    Med Mycol; 2020 Jan; 58(1):93-106. PubMed ID: 30843057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemoglobin is an effective inducer of hyphal differentiation in Candida albicans.
    Pendrak ML; Roberts DD
    Med Mycol; 2007 Feb; 45(1):61-71. PubMed ID: 17325946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activity of coumarin against Candida albicans biofilms.
    Xu K; Wang JL; Chu MP; Jia C
    J Mycol Med; 2019 Apr; 29(1):28-34. PubMed ID: 30606640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.