These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 23262306)

  • 1. Characterization of aortic tissue cutting process: experimental investigation using porcine ascending aorta.
    Hu Z; Sun W; Zhang B
    J Mech Behav Biomed Mater; 2013 Feb; 18():81-9. PubMed ID: 23262306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilization of a robotic mount to determine the force required to cut palatal tissue.
    Sorouri K; Podolsky DJ; Wang AMQ; Fisher DM; Wong KW; Looi T; Drake JM; Forrest CR
    J Mech Behav Biomed Mater; 2018 Oct; 86():433-439. PubMed ID: 30031950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study on cutting force of reaming porcine bone and substitute bone.
    Liu Z; Sui J; Chen B; Yuan Z; Du C; Wang C; Chen H
    Proc Inst Mech Eng H; 2022 Jan; 236(1):94-102. PubMed ID: 34465227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regional distribution of layer-specific circumferential residual deformations and opening angles in the porcine aorta.
    Sokolis DP
    J Biomech; 2019 Nov; 96():109335. PubMed ID: 31540821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling soft-tissue deformation prior to cutting for surgical simulation: finite element analysis and study of cutting parameters.
    Chanthasopeephan T; Desai JP; Lau AC
    IEEE Trans Biomed Eng; 2007 Mar; 54(3):349-59. PubMed ID: 17355046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The impact of long term freezing on the mechanical properties of porcine aortic tissue.
    O'Leary SA; Doyle BJ; McGloughlin TM
    J Mech Behav Biomed Mater; 2014 Sep; 37():165-73. PubMed ID: 24922621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Failure of the Porcine Ascending Aorta: Multidirectional Experiments and a Unifying Microstructural Model.
    Witzenburg CM; Dhume RY; Shah SB; Korenczuk CE; Wagner HP; Alford PW; Barocas VH
    J Biomech Eng; 2017 Mar; 139(3):0310051-03100514. PubMed ID: 27893044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Significant material property differences between the porcine ascending aorta and aortic sinuses.
    Gundiah N; Matthews PB; Karimi R; Azadani A; Guccione J; Guy TS; Saloner D; Tseng EE
    J Heart Valve Dis; 2008 Nov; 17(6):606-13. PubMed ID: 19137790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Layer-specific residual deformations and uniaxial and biaxial mechanical properties of thoracic porcine aorta.
    Peña JA; Martínez MA; Peña E
    J Mech Behav Biomed Mater; 2015 Oct; 50():55-69. PubMed ID: 26103440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of cutting parameters on cutting forces and heat generation when drilling animal bone and biomechanical test materials.
    Cseke A; Heinemann R
    Med Eng Phys; 2018 Jan; 51():24-30. PubMed ID: 29089237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human dilated ascending aorta: Mechanical characterization via uniaxial tensile tests.
    Ferrara A; Morganti S; Totaro P; Mazzola A; Auricchio F
    J Mech Behav Biomed Mater; 2016 Jan; 53():257-271. PubMed ID: 26356765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biaxial tensile tests of the porcine ascending aorta.
    Deplano V; Boufi M; Boiron O; Guivier-Curien C; Alimi Y; Bertrand E
    J Biomech; 2016 Jul; 49(10):2031-2037. PubMed ID: 27211783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biaxial mechanical properties of porcine ascending aortic wall tissue.
    Nicosia MA; Kasalko JS; Cochran RP; Einstein DR; Kunzelman KS
    J Heart Valve Dis; 2002 Sep; 11(5):680-6; discussion 686-7. PubMed ID: 12358405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predictive force model for haptic feedback in bone sawing.
    James TP; Pearlman JJ; Saigal A
    Med Eng Phys; 2013 Nov; 35(11):1638-44. PubMed ID: 23806417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanics of tissue rupture during needle insertion in transverse isotropic soft tissue.
    Liu W; Yang Z; Li P; Zhang J; Jiang S
    Med Biol Eng Comput; 2019 Jun; 57(6):1353-1366. PubMed ID: 30790122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of fracture toughness exhaustion in pig aorta.
    Chu B; Gaillard E; Mongrain R; Reiter S; Tardif JC
    J Mech Behav Biomed Mater; 2013 Jan; 17():126-36. PubMed ID: 23122712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Over length quantification of the multiaxial mechanical properties of the ascending, descending and abdominal aorta using Digital Image Correlation.
    Peña JA; Corral V; Martínez MA; Peña E
    J Mech Behav Biomed Mater; 2018 Jan; 77():434-445. PubMed ID: 29024895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlations between transmural mechanical and morphological properties in porcine thoracic descending aorta.
    Hemmasizadeh A; Tsamis A; Cheheltani R; Assari S; D'Amore A; Autieri M; Kiani MF; Pleshko N; Wagner WR; Watkins SC; Vorp D; Darvish K
    J Mech Behav Biomed Mater; 2015 Jul; 47():12-20. PubMed ID: 25837340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interstitial fluid-solid interaction within aneurysmal and non-pathological human ascending aortic tissue under translational sinusoidal shear deformation.
    Haslach HW; Gipple J; Harwerth J; Rabin J
    Acta Biomater; 2020 Sep; 113():452-463. PubMed ID: 32645439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical assessment of the aortic root using novel force transducers.
    Bechsgaard T; Hønge JL; Nygaard H; Nielsen SL; Johansen P
    J Biomech; 2017 Aug; 61():58-64. PubMed ID: 28755814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.