These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 23262347)
1. Molecular characterization of ZzR1 resistance gene from Zingiber zerumbet with potential for imparting Pythium aphanidermatum resistance in ginger. Nair RA; Thomas G Gene; 2013 Mar; 516(1):58-65. PubMed ID: 23262347 [TBL] [Abstract][Full Text] [Related]
2. Defence transcriptome profiling of Zingiber zerumbet (L.) Smith by mRNA differential display. Kavitha PG; Thomas G J Biosci; 2008 Mar; 33(1):81-90. PubMed ID: 18376073 [TBL] [Abstract][Full Text] [Related]
3. Expression analysis of defense-related genes in Zingiber (Zingiberaceae) species with different levels of compatibility to the soft rot pathogen Pythium aphanidermatum. Kavitha PG; Thomas G Plant Cell Rep; 2008 Nov; 27(11):1767-76. PubMed ID: 18704430 [TBL] [Abstract][Full Text] [Related]
4. Comparative analyses reveal a phenylalanine ammonia lyase dependent and salicylic acid mediated host resistance in Zingiber zerumbet against the necrotrophic soft rot pathogen Pythium myriotylum. Augustine L; Varghese L; Kappachery S; Ramaswami VM; Surendrababu SP; Sakuntala M; Thomas G Plant Sci; 2024 Mar; 340():111972. PubMed ID: 38176527 [TBL] [Abstract][Full Text] [Related]
5. Cloning and characterization of PR5 gene from Curcuma amada and Zingiber officinale in response to Ralstonia solanacearum infection. Prasath D; El-Sharkawy I; Sherif S; Tiwary KS; Jayasankar S Plant Cell Rep; 2011 Oct; 30(10):1799-809. PubMed ID: 21594675 [TBL] [Abstract][Full Text] [Related]
6. Isolation, characterization and expression studies of resistance gene candidates (RGCs) from Zingiber spp. Aswati Nair R; Thomas G Theor Appl Genet; 2007 Dec; 116(1):123-34. PubMed ID: 17928987 [TBL] [Abstract][Full Text] [Related]
7. Isolation and molecular analysis of R-gene in resistant Zingiber officinale (ginger) varieties against Fusarium oxysporum f.sp. zingiberi. Swetha Priya R; Subramanian RB Bioresour Technol; 2008 Jul; 99(11):4540-3. PubMed ID: 17804217 [TBL] [Abstract][Full Text] [Related]
8. Comparison of the transcriptomes of ginger (Zingiber officinale Rosc.) and mango ginger (Curcuma amada Roxb.) in response to the bacterial wilt infection. Prasath D; Karthika R; Habeeba NT; Suraby EJ; Rosana OB; Shaji A; Eapen SJ; Deshpande U; Anandaraj M PLoS One; 2014; 9(6):e99731. PubMed ID: 24940878 [TBL] [Abstract][Full Text] [Related]
9. Molecular cloning and functional characterization of alpha-humulene synthase, a possible key enzyme of zerumbone biosynthesis in shampoo ginger (Zingiber zerumbet Smith). Yu F; Okamto S; Nakasone K; Adachi K; Matsuda S; Harada H; Misawa N; Utsumi R Planta; 2008 May; 227(6):1291-9. PubMed ID: 18273640 [TBL] [Abstract][Full Text] [Related]
10. Molecular phylogenetics and anti-Pythium activity of endophytes from rhizomes of wild ginger congener, Zingiber zerumbet Smith. Keerthi D; Aswati Nair R; Prasath D World J Microbiol Biotechnol; 2016 Mar; 32(3):41. PubMed ID: 26867602 [TBL] [Abstract][Full Text] [Related]
11. Development of SCAR (sequence-characterized amplified region) markers as a complementary tool for identification of ginger (Zingiber officinale Roscoe) from crude drugs and multicomponent formulations. Chavan P; Warude D; Joshi K; Patwardhan B Biotechnol Appl Biochem; 2008 May; 50(Pt 1):61-9. PubMed ID: 17868041 [TBL] [Abstract][Full Text] [Related]
12. Effective management of soft rot of ginger caused by Pythium spp. and Fusarium spp.: emerging role of nanotechnology. Rai M; Ingle AP; Paralikar P; Anasane N; Gade R; Ingle P Appl Microbiol Biotechnol; 2018 Aug; 102(16):6827-6839. PubMed ID: 29948111 [TBL] [Abstract][Full Text] [Related]
13. Use of polymerase chain reaction to detect the soft rot pathogen, Pythium myriotylum, in infected ginger rhizomes. Wang PH; Chung CY; Lin YS; Yeh Y Lett Appl Microbiol; 2003; 36(2):116-20. PubMed ID: 12535133 [TBL] [Abstract][Full Text] [Related]
14. Isolation, characterization, and evaluation of multi-trait plant growth promoting rhizobacteria for their growth promoting and disease suppressing effects on ginger. Dinesh R; Anandaraj M; Kumar A; Bini YK; Subila KP; Aravind R Microbiol Res; 2015 Apr; 173():34-43. PubMed ID: 25801969 [TBL] [Abstract][Full Text] [Related]
15. Volatile Organic Compounds Emitted by the Biocontrol Agent Pythium oligandrum Contribute to Ginger Plant Growth and Disease Resistance. Sheikh TMM; Zhou D; Ali H; Hussain S; Wang N; Chen S; Zhao Y; Wen X; Wang X; Zhang J; Wang L; Deng S; Feng H; Raza W; Fu P; Peng H; Wei L; Daly P Microbiol Spectr; 2023 Aug; 11(4):e0151023. PubMed ID: 37534988 [TBL] [Abstract][Full Text] [Related]
16. Transcriptome analysis provides novel insights into high-soil-moisture-elevated susceptibility to Ralstonia solanacearum infection in ginger (Zingiber officinale Roscoe cv. Southwest). Jiang Y; Huang M; Zhang M; Lan J; Wang W; Tao X; Liu Y Plant Physiol Biochem; 2018 Nov; 132():547-556. PubMed ID: 30316164 [TBL] [Abstract][Full Text] [Related]
17. Intraspecific strains of Pythium aphanidermatum induced disease resistance in ginger and response of host proteins. Ghosh R; Datta M; Purkayastha RP Indian J Exp Biol; 2006 Jan; 44(1):68-72. PubMed ID: 16430094 [TBL] [Abstract][Full Text] [Related]
18. Analyses between Reproductive Behavior, Genetic Diversity and Thomas GE; Geetha KA; Augustine L; Mamiyil S; Thomas G Front Plant Sci; 2016; 7():1913. PubMed ID: 28066470 [TBL] [Abstract][Full Text] [Related]
19. Daly P; Chen Y; Zhang Q; Zhu H; Li J; Zhang J; Deng S; Wang L; Zhou D; Tang Z; Wei L Plant Dis; 2022 Feb; 106(2):510-517. PubMed ID: 34340560 [TBL] [Abstract][Full Text] [Related]
20. Cloning and characterization of a novel gene that encodes (S)-beta-bisabolene synthase from ginger, Zingiber officinale. Fujisawa M; Harada H; Kenmoku H; Mizutani S; Misawa N Planta; 2010 Jun; 232(1):121-30. PubMed ID: 20229191 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]