These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 2326253)
1. A mutant T4 lysozyme (Val 131----Ala) designed to increase thermostability by the reduction of strain within an alpha-helix. Dao-Pin S; Baase WA; Matthews BW Proteins; 1990; 7(2):198-204. PubMed ID: 2326253 [TBL] [Abstract][Full Text] [Related]
2. Determination of alpha-helix propensity within the context of a folded protein. Sites 44 and 131 in bacteriophage T4 lysozyme. Blaber M; Zhang XJ; Lindstrom JD; Pepiot SD; Baase WA; Matthews BW J Mol Biol; 1994 Jan; 235(2):600-24. PubMed ID: 8289284 [TBL] [Abstract][Full Text] [Related]
3. Alanine scanning mutagenesis of the alpha-helix 115-123 of phage T4 lysozyme: effects on structure, stability and the binding of solvent. Blaber M; Baase WA; Gassner N; Matthews BW J Mol Biol; 1995 Feb; 246(2):317-30. PubMed ID: 7869383 [TBL] [Abstract][Full Text] [Related]
4. Similar hydrophobic replacements of Leu99 and Phe153 within the core of T4 lysozyme have different structural and thermodynamic consequences. Eriksson AE; Baase WA; Matthews BW J Mol Biol; 1993 Feb; 229(3):747-69. PubMed ID: 8433369 [TBL] [Abstract][Full Text] [Related]
5. Structural analysis of a non-contiguous second-site revertant in T4 lysozyme shows that increasing the rigidity of a protein can enhance its stability. Wray JW; Baase WA; Lindstrom JD; Weaver LH; Poteete AR; Matthews BW J Mol Biol; 1999 Oct; 292(5):1111-20. PubMed ID: 10512706 [TBL] [Abstract][Full Text] [Related]
6. Multiple alanine replacements within alpha-helix 126-134 of T4 lysozyme have independent, additive effects on both structure and stability. Zhang XJ; Baase WA; Matthews BW Protein Sci; 1992 Jun; 1(6):761-76. PubMed ID: 1304917 [TBL] [Abstract][Full Text] [Related]
7. Toward a simplification of the protein folding problem: a stabilizing polyalanine alpha-helix engineered in T4 lysozyme. Zhang XJ; Baase WA; Matthews BW Biochemistry; 1991 Feb; 30(8):2012-7. PubMed ID: 1998663 [TBL] [Abstract][Full Text] [Related]
8. The introduction of strain and its effects on the structure and stability of T4 lysozyme. Liu R; Baase WA; Matthews BW J Mol Biol; 2000 Jan; 295(1):127-45. PubMed ID: 10623513 [TBL] [Abstract][Full Text] [Related]
9. Analysis of the effectiveness of proline substitutions and glycine replacements in increasing the stability of phage T4 lysozyme. Nicholson H; Tronrud DE; Becktel WJ; Matthews BW Biopolymers; 1992 Nov; 32(11):1431-41. PubMed ID: 1457724 [TBL] [Abstract][Full Text] [Related]
10. Functional relationships and structural determinants of two bacteriophage T4 lysozymes: a soluble (gene e) and a baseplate-associated (gene 5) protein. Mosig G; Lin GW; Franklin J; Fan WH New Biol; 1989 Nov; 1(2):171-9. PubMed ID: 2488704 [TBL] [Abstract][Full Text] [Related]
11. Analysis of the interaction between charged side chains and the alpha-helix dipole using designed thermostable mutants of phage T4 lysozyme. Nicholson H; Anderson DE; Dao-pin S; Matthews BW Biochemistry; 1991 Oct; 30(41):9816-28. PubMed ID: 1911773 [TBL] [Abstract][Full Text] [Related]
12. A cavity-containing mutant of T4 lysozyme is stabilized by buried benzene. Eriksson AE; Baase WA; Wozniak JA; Matthews BW Nature; 1992 Jan; 355(6358):371-3. PubMed ID: 1731252 [TBL] [Abstract][Full Text] [Related]
13. Contributions of hydrogen bonds of Thr 157 to the thermodynamic stability of phage T4 lysozyme. Alber T; Sun DP; Wilson K; Wozniak JA; Cook SP; Matthews BW Nature; 1987 Nov 5-11; 330(6143):41-6. PubMed ID: 3118211 [TBL] [Abstract][Full Text] [Related]
14. Contribution of the hydrophobic effect to the stability of human lysozyme: calorimetric studies and X-ray structural analyses of the nine valine to alanine mutants. Takano K; Yamagata Y; Fujii S; Yutani K Biochemistry; 1997 Jan; 36(4):688-98. PubMed ID: 9020766 [TBL] [Abstract][Full Text] [Related]
15. Dissection of helix capping in T4 lysozyme by structural and thermodynamic analysis of six amino acid substitutions at Thr 59. Bell JA; Becktel WJ; Sauer U; Baase WA; Matthews BW Biochemistry; 1992 Apr; 31(14):3590-6. PubMed ID: 1567817 [TBL] [Abstract][Full Text] [Related]
16. Stabilization of Escherichia coli ribonuclease HI by cavity-filling mutations within a hydrophobic core. Ishikawa K; Nakamura H; Morikawa K; Kanaya S Biochemistry; 1993 Jun; 32(24):6171-8. PubMed ID: 8390295 [TBL] [Abstract][Full Text] [Related]
17. Energetic cost and structural consequences of burying a hydroxyl group within the core of a protein determined from Ala-->Ser and Val-->Thr substitutions in T4 lysozyme. Blaber M; Lindstrom JD; Gassner N; Xu J; Heinz DW; Matthews BW Biochemistry; 1993 Oct; 32(42):11363-73. PubMed ID: 8218201 [TBL] [Abstract][Full Text] [Related]
18. Structural and thermodynamic analysis of the packing of two alpha-helices in bacteriophage T4 lysozyme. Daopin S; Alber T; Baase WA; Wozniak JA; Matthews BW J Mol Biol; 1991 Sep; 221(2):647-67. PubMed ID: 1920439 [TBL] [Abstract][Full Text] [Related]
19. Structural studies of mutants of T4 lysozyme that alter hydrophobic stabilization. Matsumura M; Wozniak JA; Sun DP; Matthews BW J Biol Chem; 1989 Sep; 264(27):16059-66. PubMed ID: 2674124 [TBL] [Abstract][Full Text] [Related]
20. Enhanced protein thermostability from designed mutations that interact with alpha-helix dipoles. Nicholson H; Becktel WJ; Matthews BW Nature; 1988 Dec; 336(6200):651-6. PubMed ID: 3200317 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]