These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 23262546)

  • 1. Study of Zernike polynomials of an elliptical aperture obscured with an elliptical obscuration.
    Hasan SY; Shaker AS
    Appl Opt; 2012 Dec; 51(35):8490-7. PubMed ID: 23262546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of Zernike polynomials of an elliptical aperture obscured with an elliptical obscuration: reply.
    Hasan SY; Shaker AS
    Appl Opt; 2013 Aug; 52(24):5965-6. PubMed ID: 24084999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of Zernike polynomials of an elliptical aperture obscured with an elliptical obscuration: comment.
    Díaz JA; Mahajan VN
    Appl Opt; 2013 Aug; 52(24):5962-4. PubMed ID: 24084998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orthonormal polynomials in wavefront analysis: analytical solution.
    Mahajan VN; Dai GM
    J Opt Soc Am A Opt Image Sci Vis; 2007 Sep; 24(9):2994-3016. PubMed ID: 17767271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of annular wavefront interpretation with Zernike circle polynomials and annular polynomials.
    Hou X; Wu F; Yang L; Chen Q
    Appl Opt; 2006 Dec; 45(35):8893-901. PubMed ID: 17119589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Orthonormal polynomials in wavefront analysis: error analysis.
    Dai GM; Mahajan VN
    Appl Opt; 2008 Jul; 47(19):3433-45. PubMed ID: 18594590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zernike annular polynomials and optical aberrations of systems with annular pupils.
    Mahajan VN
    Appl Opt; 1994 Dec; 33(34):8125-7. PubMed ID: 20963042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orthonormal aberration polynomials for anamorphic optical imaging systems with circular pupils.
    Mahajan VN
    Appl Opt; 2012 Jun; 51(18):4087-91. PubMed ID: 22722284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orthonormal vector general polynomials derived from the Cartesian gradient of the orthonormal Zernike-based polynomials.
    Mafusire C; Krüger TPJ
    J Opt Soc Am A Opt Image Sci Vis; 2018 Jun; 35(6):840-849. PubMed ID: 29877326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generalization of Zernike polynomials for regular portions of circles and ellipses.
    Navarro R; López JL; Díaz JA; Sinusía EP
    Opt Express; 2014 Sep; 22(18):21263-79. PubMed ID: 25321506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zernike-gauss polynomials and optical aberrations of systems with gaussian pupils.
    Mahajan VN
    Appl Opt; 1995 Dec; 34(34):8057-9. PubMed ID: 21068908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orthonormal aberration polynomials for optical systems with circular and annular sector pupils.
    Díaz JA; Mahajan VN
    Appl Opt; 2013 Feb; 52(6):1136-47. PubMed ID: 23434982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient and robust recurrence relations for the Zernike circle polynomials and their derivatives in Cartesian coordinates.
    Andersen TB
    Opt Express; 2018 Jul; 26(15):18878-18896. PubMed ID: 30114148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orthonormal curvature polynomials over a unit circle: basis set derived from curvatures of Zernike polynomials.
    Zhao C; Burge JH
    Opt Express; 2013 Dec; 21(25):31430-43. PubMed ID: 24514717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic comparison of the use of annular and Zernike circle polynomials for annular wavefronts.
    Mahajan VN; Aftab M
    Appl Opt; 2010 Nov; 49(33):6489-501. PubMed ID: 21102675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative assessment of orthogonal polynomials for wavefront reconstruction over the square aperture.
    Ye J; Gao Z; Wang S; Cheng J; Wang W; Sun W
    J Opt Soc Am A Opt Image Sci Vis; 2014 Oct; 31(10):2304-11. PubMed ID: 25401259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Full-aperture wavefront reconstruction from annular subaperture interferometric data by use of Zernike annular polynomials and a matrix method for testing large aspheric surfaces.
    Hou X; Wu F; Yang L; Wu S; Chen Q
    Appl Opt; 2006 May; 45(15):3442-55. PubMed ID: 16708088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On a propagation-invariant, orthogonal modal expansion on the unit disk: going beyond Nijboer-Zernike theory of aberrations.
    El Gawhary O
    Opt Lett; 2015 Jun; 40(11):2626-9. PubMed ID: 26030574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zernike-like systems in polygons and polygonal facets.
    Ferreira C; López JL; Navarro R; Sinusía EP
    Appl Opt; 2015 Jul; 54(21):6575-83. PubMed ID: 26367845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gram-Schmidt orthonormalization of Zernike polynomials for general aperture shapes.
    Swantner W; Chow WW
    Appl Opt; 1994 Apr; 33(10):1832-7. PubMed ID: 20885515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.