These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Orthonormal vector polynomials in a unit circle, Part I: Basis set derived from gradients of Zernike polynomials. Zhao C; Burge JH Opt Express; 2007 Dec; 15(26):18014-24. PubMed ID: 19551099 [TBL] [Abstract][Full Text] [Related]
23. Phase wavefront aberration modeling using Zernike and pseudo-Zernike polynomials. Rahbar K; Faez K; Attaran Kakhki E J Opt Soc Am A Opt Image Sci Vis; 2013 Oct; 30(10):1988-93. PubMed ID: 24322854 [TBL] [Abstract][Full Text] [Related]
24. Zernike circle polynomials and optical aberrations of systems with circular pupils. Mahajan VN Appl Opt; 1994 Dec; 33(34):8121. PubMed ID: 20963040 [TBL] [Abstract][Full Text] [Related]
25. Zernike olivary polynomials for applications with olivary pupils. Zheng Y; Sun S; Li Y Appl Opt; 2016 Apr; 55(12):3116-25. PubMed ID: 27140076 [TBL] [Abstract][Full Text] [Related]
26. Jacobi circle and annular polynomials: modal wavefront reconstruction from wavefront gradient. Sun W; Wang S; He X; Xu B J Opt Soc Am A Opt Image Sci Vis; 2018 Jul; 35(7):1140-1148. PubMed ID: 30110306 [TBL] [Abstract][Full Text] [Related]
27. New separated polynomial solutions to the Zernike system on the unit disk and interbasis expansion. Pogosyan GS; Wolf KB; Yakhno A J Opt Soc Am A Opt Image Sci Vis; 2017 Oct; 34(10):1844-1848. PubMed ID: 29036055 [TBL] [Abstract][Full Text] [Related]
28. Modal wavefront reconstruction based on Zernike polynomials for lateral shearing interferometry: comparisons of existing algorithms. Dai F; Tang F; Wang X; Sasaki O; Feng P Appl Opt; 2012 Jul; 51(21):5028-37. PubMed ID: 22858941 [TBL] [Abstract][Full Text] [Related]
31. Orthonormal aberration polynomials for anamorphic optical imaging systems with rectangular pupils. Mahajan VN Appl Opt; 2010 Dec; 49(36):6924-9. PubMed ID: 21173827 [TBL] [Abstract][Full Text] [Related]
32. Zernike vs. Bessel circular functions in visual optics. Trevino JP; Gómez-Correa JE; Iskander DR; Chávez-Cerda S Ophthalmic Physiol Opt; 2013 Jul; 33(4):394-402. PubMed ID: 23668897 [TBL] [Abstract][Full Text] [Related]
33. Recursive formula to compute Zernike radial polynomials. Honarvar Shakibaei B; Paramesran R Opt Lett; 2013 Jul; 38(14):2487-9. PubMed ID: 23939089 [TBL] [Abstract][Full Text] [Related]
34. Zernike expansion of derivatives and Laplacians of the Zernike circle polynomials. Janssen AJ J Opt Soc Am A Opt Image Sci Vis; 2014 Jul; 31(7):1604-13. PubMed ID: 25121449 [TBL] [Abstract][Full Text] [Related]
35. Orthonormal vector polynomials in a unit circle, Part II : Completing the basis set. Zhao C; Burge JH Opt Express; 2008 Apr; 16(9):6586-91. PubMed ID: 18545361 [TBL] [Abstract][Full Text] [Related]
36. Wave-front interpretation with Zernike polynomials. Wang JY; Silva DE Appl Opt; 1980 May; 19(9):1510-8. PubMed ID: 20221066 [TBL] [Abstract][Full Text] [Related]
38. General method to derive the relationship between two sets of Zernike coefficients corresponding to different aperture sizes. Shu H; Luo L; Han G; Coatrieux JL J Opt Soc Am A Opt Image Sci Vis; 2006 Aug; 23(8):1960-6. PubMed ID: 16835654 [TBL] [Abstract][Full Text] [Related]
39. Mathematical construction and perturbation analysis of Zernike discrete orthogonal points. Shi Z; Sui Y; Liu Z; Peng J; Yang H Appl Opt; 2012 Jun; 51(18):4210-4. PubMed ID: 22722299 [TBL] [Abstract][Full Text] [Related]