These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 23262645)

  • 1. Refining classical force fields for ionic liquids: theory and application to [MMIM][Cl].
    Dommert F; Holm C
    Phys Chem Chem Phys; 2013 Feb; 15(6):2037-49. PubMed ID: 23262645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The general AMBER force field (GAFF) can accurately predict thermodynamic and transport properties of many ionic liquids.
    Sprenger KG; Jaeger VW; Pfaendtner J
    J Phys Chem B; 2015 May; 119(18):5882-95. PubMed ID: 25853313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Force fields for studying the structure and dynamics of ionic liquids: a critical review of recent developments.
    Dommert F; Wendler K; Berger R; Delle Site L; Holm C
    Chemphyschem; 2012 May; 13(7):1625-37. PubMed ID: 22344944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of complex classical force fields through force matching to ab initio data: application to a room-temperature ionic liquid.
    Youngs TG; Del Pópolo MG; Kohanoff J
    J Phys Chem B; 2006 Mar; 110(11):5697-707. PubMed ID: 16539515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First-Principles, Physically Motivated Force Field for the Ionic Liquid [BMIM][BF4].
    Choi E; McDaniel JG; Schmidt JR; Yethiraj A
    J Phys Chem Lett; 2014 Aug; 5(15):2670-4. PubMed ID: 26277961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative study of two classical force fields on statics and dynamics of [EMIM][BF4] investigated via molecular dynamics simulations.
    Dommert F; Schmidt J; Qiao B; Zhao Y; Krekeler C; Delle Site L; Berger R; Holm C
    J Chem Phys; 2008 Dec; 129(22):224501. PubMed ID: 19071922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of polarization on structural, thermodynamic, and dynamic properties of ionic liquids obtained from molecular dynamics simulations.
    Bedrov D; Borodin O; Li Z; Smith GD
    J Phys Chem B; 2010 Apr; 114(15):4984-97. PubMed ID: 20337454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies of structural, dynamical, and interfacial properties of 1-alkyl-3-methylimidazolium iodide ionic liquids by molecular dynamics simulation.
    Ghatee MH; Zolghadr AR; Moosavi F; Ansari Y
    J Chem Phys; 2012 Mar; 136(12):124706. PubMed ID: 22462887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polarizability versus mobility: atomistic force field for ionic liquids.
    Chaban V
    Phys Chem Chem Phys; 2011 Sep; 13(35):16055-62. PubMed ID: 21829806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative prediction of physical properties of imidazolium based room temperature ionic liquids through determination of condensed phase site charges: a refined force field.
    Mondal A; Balasubramanian S
    J Phys Chem B; 2014 Mar; 118(12):3409-22. PubMed ID: 24605817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple AIMD approach to derive atomic charges for condensed phase simulation of ionic liquids.
    Zhang Y; Maginn EJ
    J Phys Chem B; 2012 Aug; 116(33):10036-48. PubMed ID: 22852554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamic properties for applications in chemical industry via classical force fields.
    Guevara-Carrion G; Hasse H; Vrabec J
    Top Curr Chem; 2012; 307():201-49. PubMed ID: 21678137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved classical united-atom force field for imidazolium-based ionic liquids: tetrafluoroborate, hexafluorophosphate, methylsulfate, trifluoromethylsulfonate, acetate, trifluoroacetate, and bis(trifluoromethylsulfonyl)amide.
    Zhong X; Liu Z; Cao D
    J Phys Chem B; 2011 Aug; 115(33):10027-40. PubMed ID: 21751818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamic simulations of ionic liquids: a reliable description of structure, thermodynamics and dynamics.
    Köddermann T; Paschek D; Ludwig R
    Chemphyschem; 2007 Dec; 8(17):2464-70. PubMed ID: 17943710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved united-atom force field for 1-alkyl-3-methylimidazolium chloride.
    Liu Z; Chen T; Bell A; Smit B
    J Phys Chem B; 2010 Apr; 114(13):4572-82. PubMed ID: 20235515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ionic liquids studied across different scales: a computational perspective.
    Wendler K; Dommert F; Zhao YY; Berger R; Holm C; Delle Site L
    Faraday Discuss; 2012; 154():111-32; discussion 189-220, 465-71. PubMed ID: 22455017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel united-atom force field for imidazolium-based ionic liquids.
    Liu Z; Wu X; Wang W
    Phys Chem Chem Phys; 2006 Mar; 8(9):1096-104. PubMed ID: 16633591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A force field for molecular simulation of tetrabutylphosphonium amino acid ionic liquids.
    Zhou G; Liu X; Zhang S; Yu G; He H
    J Phys Chem B; 2007 Jun; 111(25):7078-84. PubMed ID: 17552552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polarizable and nonpolarizable force fields for alkyl nitrates.
    Borodin O; Smith GD; Sewell TD; Bedrov D
    J Phys Chem B; 2008 Jan; 112(3):734-42. PubMed ID: 18085767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-pressure study of the methylsulfate and tosylate imidazolium ionic liquids.
    Aparicio S; Alcalde R; García B; Leal JM
    J Phys Chem B; 2009 Apr; 113(16):5593-606. PubMed ID: 19331328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.