BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 23262659)

  • 1. Excitonic properties of wurtzite InP nanowires grown on silicon substrate.
    Hadj Alouane MH; Chauvin N; Khmissi H; Naji K; Ilahi B; Maaref H; Patriarche G; Gendry M; Bru-Chevallier C
    Nanotechnology; 2013 Jan; 24(3):035704. PubMed ID: 23262659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature Dependence of Interband Transitions in Wurtzite InP Nanowires.
    Zilli A; De Luca M; Tedeschi D; Fonseka HA; Miriametro A; Tan HH; Jagadish C; Capizzi M; Polimeni A
    ACS Nano; 2015 Apr; 9(4):4277-87. PubMed ID: 25801648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal-structure-dependent photoluminescence from InP nanowires.
    Mattila M; Hakkarainen T; Mulot M; Lipsanen H
    Nanotechnology; 2006 Mar; 17(6):1580-3. PubMed ID: 26558562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of V/III ratio and catalyst particle size on the crystal structure and optical properties of InP nanowires.
    Paiman S; Gao Q; Tan HH; Jagadish C; Pemasiri K; Montazeri M; Jackson HE; Smith LM; Yarrison-Rice JM; Zhang X; Zou J
    Nanotechnology; 2009 Jun; 20(22):225606. PubMed ID: 19436086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wurtzite InP/InAs/InP core-shell nanowires emitting at telecommunication wavelengths on Si substrate.
    Alouane MH; Anufriev R; Chauvin N; Khmissi H; Naji K; Ilahi B; Maaref H; Patriarche G; Gendry M; Bru-Chevallier C
    Nanotechnology; 2011 Oct; 22(40):405702. PubMed ID: 21911925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth of InAs/InP core-shell nanowires with various pure crystal structures.
    Gorji Ghalamestani S; Heurlin M; Wernersson LE; Lehmann S; Dick KA
    Nanotechnology; 2012 Jul; 23(28):285601. PubMed ID: 22717421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling crystal phases in GaAs nanowires grown by Au-assisted molecular beam epitaxy.
    Dheeraj DL; Munshi AM; Scheffler M; van Helvoort AT; Weman H; Fimland BO
    Nanotechnology; 2013 Jan; 24(1):015601. PubMed ID: 23220972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoluminescence study of as-grown vertically standing wurtzite InP nanowire ensembles.
    Iqbal A; Beech JP; Anttu N; Pistol ME; Samuelson L; Borgström MT; Yartsev A
    Nanotechnology; 2013 Mar; 24(11):115706. PubMed ID: 23455456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hole and Electron Effective Masses in Single InP Nanowires with a Wurtzite-Zincblende Homojunction.
    Tedeschi D; Fonseka HA; Blundo E; Granados Del Águila A; Guo Y; Tan HH; Christianen PCM; Jagadish C; Polimeni A; De Luca M
    ACS Nano; 2020 Sep; 14(9):11613-11622. PubMed ID: 32865391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical and optical properties of InP nanowire ensemble p⁺-i-n⁺ photodetectors.
    Pettersson H; Zubritskaya I; Nghia NT; Wallentin J; Borgström MT; Storm K; Landin L; Wickert P; Capasso F; Samuelson L
    Nanotechnology; 2012 Apr; 23(13):135201. PubMed ID: 22418741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Illuminating the second conduction band and spin-orbit energy in single wurtzite InP nanowires.
    Perera S; Shi T; Fickenscher MA; Jackson HE; Smith LM; Yarrison-Rice JM; Paiman S; Gao Q; Tan HH; Jagadish C
    Nano Lett; 2013; 13(11):5367-72. PubMed ID: 24134708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Triple-twin domains in Mg doped GaN wurtzite nanowires: structural and electronic properties of this zinc-blende-like stacking.
    Arbiol J; Estradé S; Prades JD; Cirera A; Furtmayr F; Stark C; Laufer A; Stutzmann M; Eickhoff M; Gass MH; Bleloch AL; Peiró F; Morante JR
    Nanotechnology; 2009 Apr; 20(14):145704. PubMed ID: 19420534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In(x)Ga(1-x)As nanowires with uniform composition, pure wurtzite crystal phase and taper-free morphology.
    Ameruddin AS; Fonseka HA; Caroff P; Wong-Leung J; Op het Veld RL; Boland JL; Johnston MB; Tan HH; Jagadish C
    Nanotechnology; 2015 May; 26(20):205604. PubMed ID: 25927420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A story told by a single nanowire: optical properties of wurtzite GaAs.
    Ahtapodov L; Todorovic J; Olk P; Mjåland T; Slåttnes P; Dheeraj DL; van Helvoort AT; Fimland BO; Weman H
    Nano Lett; 2012 Dec; 12(12):6090-5. PubMed ID: 23131181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zinc blende and wurtzite crystal phase mixing and transition in indium phosphide nanowires.
    Ikejiri K; Kitauchi Y; Tomioka K; Motohisa J; Fukui T
    Nano Lett; 2011 Oct; 11(10):4314-8. PubMed ID: 21875079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High optical quality single crystal phase wurtzite and zincblende InP nanowires.
    Vu TT; Zehender T; Verheijen MA; Plissard SR; Immink GW; Haverkort JE; Bakkers EP
    Nanotechnology; 2013 Mar; 24(11):115705. PubMed ID: 23455417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unit cell parameters of wurtzite InP nanowires determined by x-ray diffraction.
    Kriegner D; Wintersberger E; Kawaguchi K; Wallentin J; Borgström MT; Stangl J
    Nanotechnology; 2011 Oct; 22(42):425704. PubMed ID: 21937785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carrier thermalization dynamics in single zincblende and wurtzite InP Nanowires.
    Wang Y; Jackson HE; Smith LM; Burgess T; Paiman S; Gao Q; Tan HH; Jagadish C
    Nano Lett; 2014 Dec; 14(12):7153-60. PubMed ID: 25382815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First-principles study of the electronic properties of wurtzite, zinc-blende, and twinned InP nanowires.
    Li D; Wang Z; Gao F
    Nanotechnology; 2010 Dec; 21(50):505709. PubMed ID: 21098947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous Growth of Pure Wurtzite and Zinc Blende Nanowires.
    Lehmann S; Wallentin J; Mårtensson EK; Ek M; Deppert K; Dick KA; Borgström MT
    Nano Lett; 2019 Apr; 19(4):2723-2730. PubMed ID: 30888174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.