These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 232629)

  • 1. Alterations in purine metabolism in cultured fibroblasts with HGPRT deficiency and with PRPP synthetase superactivity.
    Zoref-Shani E; Sperling O
    Adv Exp Med Biol; 1979; 122B():19-24. PubMed ID: 232629
    [No Abstract]   [Full Text] [Related]  

  • 2. Kinetic aspects of purine metabolism in cultured fibroblasts. A comparative study of cells from patients overproducing purines due to HGPRT deficiency and PRPP synthetase superactivity.
    Zoref E; de Vries A; Sperling O
    Monogr Hum Genet; 1978; 10():96-9. PubMed ID: 214700
    [No Abstract]   [Full Text] [Related]  

  • 3. PRPP and purine nucleotide metabolism in human lymphoblasts with both PRPP synthetase superactivity and HGPRT deficiency.
    Becker MA; Kim M; Husain K
    Adv Exp Med Biol; 1989; 253B():13-20. PubMed ID: 2481968
    [No Abstract]   [Full Text] [Related]  

  • 4. Characterization of purine nucleotide metabolism in cultured fibroblasts with deficiency of hypoxanthine-guanine phosphoribosyltransferase and with superactivity of phosphoribosylpyrophosphate synthetase.
    Zoref-Shani E; Sperling O
    Enzyme; 1980; 25(6):413-8. PubMed ID: 6258915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and metabolic fate of purine nucleotides in cultured fibroblasts from normal subjects and from purine overproducing mutants.
    Zoref E; Sivan O; Sperling O
    Biochim Biophys Acta; 1978 Dec; 521(2):452-8. PubMed ID: 216390
    [No Abstract]   [Full Text] [Related]  

  • 6. Gout with superactive phosphoribosylpyrophosphate synthetase due to increased enzyme catalytic rate.
    Becker MA; Losman MJ; Itkin P; Simkin PA
    J Lab Clin Med; 1982 Apr; 99(4):495-511. PubMed ID: 6174658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutant feedback-resistant phosphoribosylpyrophosphate synthetase associated with purine overproduction and gout. Phosphoribosylpyrophosphate and purine metabolism in cultured fibroblasts.
    Zoref E; De Vries A; Sperling O
    J Clin Invest; 1975 Nov; 56(5):1093-9. PubMed ID: 171280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proceedings: Characterization of purine metabolism in cultured fibroblasts from a gouty family with feedback-resistant phosphoribosylpyrophosphate synthetase.
    Zoref E; Sperling O; De Vries A
    Isr J Med Sci; 1975 Nov; 11(11):1216. PubMed ID: 173692
    [No Abstract]   [Full Text] [Related]  

  • 9. Increased phosphoribosylpyrophosphate synthetase activity in fibroblasts of hypoxanthine-guanine phosphoribosyl transferase deficient patients.
    Torrelio BM; Paz MA
    Biochem Biophys Res Commun; 1979 Mar; 87(2):380-7. PubMed ID: 220971
    [No Abstract]   [Full Text] [Related]  

  • 10. Phosphoribosylpyrophosphate synthesis in cultured human cells.
    Benke PJ; Dittmar D
    Science; 1977 Dec; 198(4322):1171-3. PubMed ID: 201027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of accelerated purine nucleotide synthesis in human fibroblasts with superactive phosphoribosylpyrophosphate synthetases.
    Becker MA; Losman MJ; Kim M
    J Biol Chem; 1987 Apr; 262(12):5596-602. PubMed ID: 3032938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patterns of phosphoribosylpyrophosphate and ribose-5-phosphate concentration and generation in fibroblasts from patients with gout and purine overproduction.
    Becker MA
    J Clin Invest; 1976 Feb; 57(2):308-18. PubMed ID: 176178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purine synthesis during amino acid starvation of lymphoblasts with HPRT deficiency or PP-ribose-P synthetase overactivity decreases less than in normal cells.
    Boss GR
    Adv Exp Med Biol; 1984; 165 Pt B():15-9. PubMed ID: 6326498
    [No Abstract]   [Full Text] [Related]  

  • 14. Uric acid metabolism in man.
    Balis ME
    Adv Clin Chem; 1976; 18():213-46. PubMed ID: 176879
    [No Abstract]   [Full Text] [Related]  

  • 15. Increased PRPP synthetase activity in cultured rat hepatoma cells containing mutations in the hypoxanthine-guanine phosphoribosyltransferase gene.
    Graf LH; McRoberts JA; Harrison TM; Martin DW
    J Cell Physiol; 1976 Jul; 88(3):331-42. PubMed ID: 178676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of nicotinamide-adenine dinucleotide synthesis in erythrocytes of patients with hypoxanthine-guanine phosphoribosyltransferase deficiency and a patient with phosphoribosylpyrophosphate synthetase superactivity.
    Micheli V; Simmonds HA; Ricci C
    Clin Sci (Lond); 1990 Feb; 78(2):239-45. PubMed ID: 2155755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overproduction disease in man due to enzyme feedback resistance mutation. Purine overproduction in gout due to excessive activity of mutant feedback-resistant phosphoribosylpyrophosphate synthetase.
    Sperling O; Boer P; Brosh S; Zoref E; de Vries A
    Enzyme; 1978; 23(1):1-9. PubMed ID: 203449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphoribosylpyrophosphate synthetase superactivity. A study of five patients with catalytic defects in the enzyme.
    Becker MA; Losman MJ; Rosenberg AL; Mehlman I; Levinson DJ; Holmes EW
    Arthritis Rheum; 1986 Jul; 29(7):880-8. PubMed ID: 3017368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of purine nucleotide synthesis in human B lymphoblasts with both hypoxanthine-guanine phosphoribosyltransferase deficiency and phosphoribosylpyrophosphate synthetase superactivity.
    Becker MA; Kim M; Husain K; Kang T
    J Biol Chem; 1992 Mar; 267(7):4317-21. PubMed ID: 1311306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dependence of the metabolic fate of IMP on the rate of total IMP synthesis. Studies in cultured fibroblasts from normal subjects and from purine-overproducing mutant patients.
    Zoref-Shani E; Sperling O
    Biochim Biophys Acta; 1980 May; 607(3):503-11. PubMed ID: 6249370
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.