These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 23262989)

  • 1. Interaction of metallic nanoparticles with dielectric substrates: effect of optical constants.
    Hutter T; Elliott SR; Mahajan S
    Nanotechnology; 2013 Jan; 24(3):035201. PubMed ID: 23262989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength.
    Kim K; Choi JY; Lee HB; Shin KS
    J Chem Phys; 2011 Sep; 135(12):124705. PubMed ID: 21974550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of the optical transmission by mixing the metallic and dielectric nanoparticles atop the silicon substrate.
    Yeh YM; Wang YS; Li JH
    Opt Express; 2011 Mar; 19 Suppl 2():A80-94. PubMed ID: 21445223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three dimensional design of silver nanoparticle assemblies embedded in dielectrics for Raman spectroscopy enhancement and dark-field imaging.
    Carles R; Farcau C; Bonafos C; Benassayag G; Bayle M; Benzo P; Groenen J; Zwick A
    ACS Nano; 2011 Nov; 5(11):8774-82. PubMed ID: 21988138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of sample and substrate electric properties on the electric field enhancement at the apex of SPM nanotips.
    Notingher I; Elfick A
    J Phys Chem B; 2005 Aug; 109(33):15699-706. PubMed ID: 16852992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the effects of dielectric medium, substrate, and depth on electric fields and SERS of quasi-3D plasmonic nanostructures.
    Xu J; Kvasnička P; Idso M; Jordan RW; Gong H; Homola J; Yu Q
    Opt Express; 2011 Oct; 19(21):20493-505. PubMed ID: 21997057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Raman scattering from nanoparticle-decorated nanocone substrates: a practical approach to harness in-plane excitation.
    Hu YS; Jeon J; Seok TJ; Lee S; Hafner JH; Drezek RA; Choo H
    ACS Nano; 2010 Oct; 4(10):5721-30. PubMed ID: 20836500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concentric necklace nanolenses for optical near-field focusing and enhancement.
    Pasquale AJ; Reinhard BM; Dal Negro L
    ACS Nano; 2012 May; 6(5):4341-8. PubMed ID: 22537221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anisotropic surface enhanced Raman scattering in nanoparticle and nanowire arrays.
    Ranjan M; Facsko S
    Nanotechnology; 2012 Dec; 23(48):485307. PubMed ID: 23128982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-molecule Raman spectroscopy: a probe of surface dynamics and plasmonic fields.
    Haran G
    Acc Chem Res; 2010 Aug; 43(8):1135-43. PubMed ID: 20521801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembly of large-scale and ultrathin silver nanoplate films with tunable plasmon resonance properties.
    Zhang XY; Hu A; Zhang T; Lei W; Xue XJ; Zhou Y; Duley WW
    ACS Nano; 2011 Nov; 5(11):9082-92. PubMed ID: 21955107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic hot spots: nanogap enhancement vs. focusing effects from surrounding nanoparticles.
    Pavaskar P; Theiss J; Cronin SB
    Opt Express; 2012 Jun; 20(13):14656-62. PubMed ID: 22714527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering photonic-plasmonic coupling in metal nanoparticle necklaces.
    Pasquale AJ; Reinhard BM; Dal Negro L
    ACS Nano; 2011 Aug; 5(8):6578-85. PubMed ID: 21739951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reducing the loss of electric field enhancement for plasmonic core-shell nanoparticle dimers by high refractive index dielectric coating.
    Zhai Y; Deng L; Chen Y; Wang N; Huang Y
    J Phys Condens Matter; 2020 Mar; 32(10):105001. PubMed ID: 31658445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Metallic Nanoparticles on Improving the Detection Capacity of a Micro-SERS Sensor Created by the Hybrid Waveguide of Metallic Slots and Dielectric Strips.
    Tang F; Boutami S; Adam PM
    ACS Omega; 2018 Apr; 3(4):4017-4026. PubMed ID: 31458638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metallic nanocrystals near ultrasmooth metallic films for surface-enhanced Raman scattering application.
    Tang J; Ponizovskaya EV; Bratkovsky AM; Stewart DR; Li Z; Williams RS
    Nanotechnology; 2008 Oct; 19(41):415702. PubMed ID: 21832653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active role of oxide layers on the polarization of plasmonic nanostructures.
    D'Agostino S; Della Sala F
    ACS Nano; 2010 Jul; 4(7):4117-25. PubMed ID: 20536221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Significant field enhancements in an individual silver nanoparticle near a substrate covered with a thin gain film.
    Xian J; Chen L; Niu H; Qu J; Song J
    Nanoscale; 2014 Nov; 6(22):13994-4001. PubMed ID: 25317661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Are scaling laws of sub-optical wavelength electric field confinement in arrays of metal nanoparticles related to plasmonics or to geometry?
    Mezeme ME; Brosseau C
    Opt Express; 2012 Jul; 20(16):17591-9. PubMed ID: 23038312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.