These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

27 related articles for article (PubMed ID: 23263098)

  • 1. A simple high-speed random number generator with minimal post-processing using a random Raman fiber laser.
    Monet F; Boisvert JS; Kashyap R
    Sci Rep; 2021 Jun; 11(1):13182. PubMed ID: 34162986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On prediction of chaotic dynamics in semiconductor lasers by reservoir computing.
    Li XZ; Yang B; Zhao S; Gu Y; Zhao M
    Opt Express; 2023 Nov; 31(24):40592-40603. PubMed ID: 38041355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scalable parallel ultrafast optical random bit generation based on a single chaotic microcomb.
    Li P; Li Q; Tang W; Wang W; Zhang W; Little BE; Chu ST; Shore KA; Qin Y; Wang Y
    Light Sci Appl; 2024 Mar; 13(1):66. PubMed ID: 38438369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Promotion of Probabilistic Bit Generation in Mott Devices by Embedded Metal Nanoparticles.
    Seo Y; Park Y; Hur P; Jo M; Heo J; Choi BJ; Son J
    Adv Mater; 2024 May; ():e2402490. PubMed ID: 38742686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of chaotic light output in semiconductor laser systems based on multi-objective optimization algorithm.
    Kong J; Li J; Li P
    PLoS One; 2024; 19(4):e0301630. PubMed ID: 38603689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probabilistic computing with voltage-controlled dynamics in magnetic tunnel junctions.
    Shao Y; Duffee C; Raimondo E; Davila N; Lopez-Dominguez V; Katine JA; Finocchio G; Khalili Amiri P
    Nanotechnology; 2023 Sep; 34(49):. PubMed ID: 37669644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Massive and parallel 10 Tbit/s physical random bit generation with chaotic microcomb.
    Hu Y; Bai Q; Tang X; Xiong W; Wu Y; Zhang X; Xiao Y; Du R; Liu L; Xia G; Wu Z; Yang J; Zhou H; Wu J
    Front Optoelectron; 2023 Sep; 16(1):24. PubMed ID: 37737527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical-layer key distribution based on commonly-driven laser synchronization with random modulation of drive light.
    Mo L; Wang A; Sun Y; Xu J; Zhang Y; Zhang X; Qin Y; Wang Y
    Opt Express; 2023 Dec; 31(26):42838-42849. PubMed ID: 38178393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing the spike timing of a chaotic laser by using ordinal analysis and machine learning.
    Boaretto BRR; Macau EEN; Masoller C
    Chaos; 2024 Apr; 34(4):. PubMed ID: 38558042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysing All-Optical Random Bit Sequences Using Gap-Based Approaches.
    Lange C; Ahrens A; Singh J; Grote O
    Sensors (Basel); 2024 Jul; 24(14):. PubMed ID: 39065872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hardware emulation of stochastic p-bits for invertible logic.
    Pervaiz AZ; Ghantasala LA; Camsari KY; Datta S
    Sci Rep; 2017 Sep; 7(1):10994. PubMed ID: 28887489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum Random Number Generation Based on Multi-photon Detection.
    Aungskunsiri K; Jantarachote S; Wongpanya K; Amarit R; Punpetch P; Sumriddetchkajorn S
    ACS Omega; 2023 Sep; 8(38):35085-35092. PubMed ID: 37779994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A quantum sensing metrology for magnetic memories.
    Borràs VJ; Carpenter R; Žaper L; Rao S; Couet S; Munsch M; Maletinsky P; Rickhaus P
    Npj Spintron; 2024; 2(1):14. PubMed ID: 38883426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast random bits generation based on a single chaotic semiconductor ring laser.
    Nguimdo RM; Verschaffelt G; Danckaert J; Leijtens X; Bolk J; Van der Sande G
    Opt Express; 2012 Dec; 20(27):28603-13. PubMed ID: 23263098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers.
    Hirano K; Yamazaki T; Morikatsu S; Okumura H; Aida H; Uchida A; Yoshimori S; Yoshimura K; Harayama T; Davis P
    Opt Express; 2010 Mar; 18(6):5512-24. PubMed ID: 20389568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential-phase-shift quantum key distribution experiment using fast physical random bit generator with chaotic semiconductor lasers.
    Honjo T; Uchida A; Amano K; Hirano K; Someya H; Okumura H; Yoshimura K; Davis P; Tokura Y
    Opt Express; 2009 May; 17(11):9053-61. PubMed ID: 19466155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of semiconductor-laser phase noise and estimation of bit-error rate performance with low-speed offline digital coherent receivers.
    Kikuchi K
    Opt Express; 2012 Feb; 20(5):5291-302. PubMed ID: 22418335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pulsed-incoherent-light-injected Fabry-Perot laser diode for WDM passive optical networks.
    Kim H
    Opt Express; 2010 Jan; 18(2):1714-21. PubMed ID: 20173999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A WDM-PON with a 40 Gb/s (32 x 1.25 Gb/s) capacity based on wavelength-locked Fabry-Perot laser diodes.
    Mun SG; Moon JH; Lee HK; Kim JY; Lee CH
    Opt Express; 2008 Jul; 16(15):11361-8. PubMed ID: 18648455
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.