These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 23263106)

  • 61. Graphene-based plasmonic photodetector for photonic integrated circuits.
    Kim JT; Yu YJ; Choi H; Choi CG
    Opt Express; 2014 Jan; 22(1):803-8. PubMed ID: 24515039
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Optimised quantum hacking of superconducting nanowire single-photon detectors.
    Tanner MG; Makarov V; Hadfield RH
    Opt Express; 2014 Mar; 22(6):6734-48. PubMed ID: 24664022
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Real-time fluorescence lifetime imaging system with a 32 x 32 0.13microm CMOS low dark-count single-photon avalanche diode array.
    Li DU; Arlt J; Richardson J; Walker R; Buts A; Stoppa D; Charbon E; Henderson R
    Opt Express; 2010 May; 18(10):10257-69. PubMed ID: 20588879
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Spatially-chirped modulation imaging of absorbtion and fluorescent objects on single-element optical detector.
    Futia G; Schlup P; Winters DG; Bartels RA
    Opt Express; 2011 Jan; 19(2):1626-40. PubMed ID: 21263702
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Proposition to build a digitally controlled biphase sinusoidal generator.
    Bayard J
    Rev Sci Instrum; 2007 May; 78(5):054702. PubMed ID: 17552847
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Experimental realization of a four-photon seven-qubit graph state for one-way quantum computation.
    Lee SM; Park HS; Cho J; Kang Y; Lee JY; Kim H; Lee DH; Choi SK
    Opt Express; 2012 Mar; 20(7):6915-26. PubMed ID: 22453369
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A microcontroller-based lock-in amplifier for sub-milliohm resistance measurements.
    Bengtsson LE
    Rev Sci Instrum; 2012 Jul; 83(7):075103. PubMed ID: 22852720
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Experimental realization of a low-noise heralded single-photon source.
    Brida G; Degiovanni IP; Genovese M; Migdall A; Piacentini F; Polyakov SV; Berchera IR
    Opt Express; 2011 Jan; 19(2):1484-92. PubMed ID: 21263690
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Kilopixel array of superconducting nanowire single-photon detectors.
    Wollman EE; Verma VB; Lita AE; Farr WH; Shaw MD; Mirin RP; Woo Nam S
    Opt Express; 2019 Nov; 27(24):35279-35289. PubMed ID: 31878700
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A photon-counting time-of-flight ranging technique developed for the avoidance of range ambiguity at gigahertz clock rates.
    Hiskett PA; Parry CS; McCarthy A; Buller GS
    Opt Express; 2008 Sep; 16(18):13685-98. PubMed ID: 18772980
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Scalable implementation of a superconducting nanowire single-photon detector array with a superconducting digital signal processor.
    Yabuno M; Miyajima S; Miki S; Terai H
    Opt Express; 2020 Apr; 28(8):12047-12057. PubMed ID: 32403706
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Measurements of the dependence of the photon-number distribution on the number of modes in parametric down-conversion.
    Dovrat L; Bakstein M; Istrati D; Shaham A; Eisenberg HS
    Opt Express; 2012 Jan; 20(3):2266-76. PubMed ID: 22330466
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Single-channel electronic readout of a multipixel superconducting nanowire single photon detector.
    Tiedau J; Schapeler T; Anant V; Fedder H; Silberhorn C; Bartley TJ
    Opt Express; 2020 Feb; 28(4):5528-5537. PubMed ID: 32121771
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Long-distance entanglement-based quantum key distribution experiment using practical detectors.
    Takesue H; Harada K; Tamaki K; Fukuda H; Tsuchizawa T; Watanabe T; Yamada K; Itabashi S
    Opt Express; 2010 Aug; 18(16):16777-87. PubMed ID: 20721069
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Superconducting nanowire single-photon detectors integrated with optical nano-antennae.
    Hu X; Dauler EA; Molnar RJ; Berggren KK
    Opt Express; 2011 Jan; 19(1):17-31. PubMed ID: 21263538
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Pulse selection at 1 MHz with electrooptic fiber switch.
    Malmström M; Tarasenko O; Margulis W
    Opt Express; 2012 Apr; 20(9):9465-70. PubMed ID: 22535036
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Complementary symmetry nanowire logic circuits: experimental demonstrations and in silico optimizations.
    Sheriff BA; Wang D; Heath JR; Kurtin JN
    ACS Nano; 2008 Sep; 2(9):1789-98. PubMed ID: 19206417
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Improvement of infrared single-photon detectors absorptance by integrated plasmonic structures.
    Csete M; Sipos A; Szalai A; Najafi F; Szabó G; Berggren KK
    Sci Rep; 2013; 3():2406. PubMed ID: 23934331
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A sub-picojoule-per-bit CMOS photonic receiver for densely integrated systems.
    Zheng X; Liu F; Patil D; Thacker H; Luo Y; Pinguet T; Mekis A; Yao J; Li G; Shi J; Raj K; Lexau J; Alon E; Ho R; Cunningham JE; Krishnamoorthy AV
    Opt Express; 2010 Jan; 18(1):204-11. PubMed ID: 20173840
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Fluorescence photon measurements from single quantum dots on an optical nanofiber.
    Yalla R; Nayak KP; Hakuta K
    Opt Express; 2012 Jan; 20(3):2932-41. PubMed ID: 22330531
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.