BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 23263112)

  • 1. Soot volume fraction fields in unsteady axis-symmetric flames by continuous laser extinction technique.
    Kashif M; Bonnety J; Guibert P; Morin C; Legros G
    Opt Express; 2012 Dec; 20(27):28742-51. PubMed ID: 23263112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence.
    Ni T; Pinson JA; Gupta S; Santoro RJ
    Appl Opt; 1995 Oct; 34(30):7083-91. PubMed ID: 21060570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser-induced incandescence measurements of soot in turbulent pool fires.
    Frederickson K; Kearney SP; Grasser TW
    Appl Opt; 2011 Feb; 50(4):A49-59. PubMed ID: 21283220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Digital camera measurements of soot temperature and soot volume fraction in axisymmetric flames.
    Guo H; Castillo JA; Sunderland PB
    Appl Opt; 2013 Nov; 52(33):8040-7. PubMed ID: 24513755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous estimation of the 3-D soot temperature and volume fraction distributions in asymmetric flames using high-speed stereoscopic images.
    Huang Q; Wang F; Yan J; Chi Y
    Appl Opt; 2012 May; 51(15):2968-78. PubMed ID: 22614600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A calibration-independent laser-induced incandescence technique for soot measurement by detecting absolute light intensity.
    Snelling DR; Smallwood GJ; Liu F; Gülder OL; Bachalo WD
    Appl Opt; 2005 Nov; 44(31):6773-85. PubMed ID: 16270566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-dimensional imaging of soot volume fraction in laminar diffusion flames.
    Snelling DR; Thomson KA; Smallwood GJ; Gülder OL
    Appl Opt; 1999 Apr; 38(12):2478-85. PubMed ID: 18319815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-dimensional two-wavelength emission technique for soot diagnostics.
    Cignoli F; De Iuliis S; Manta V; Zizak G
    Appl Opt; 2001 Oct; 40(30):5370-8. PubMed ID: 18364816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soot formation and oxidation in oscillating methane-air diffusion flames at elevated pressure.
    Hentschel J; Suntz R; Bockhorn H
    Appl Opt; 2005 Nov; 44(31):6673-81. PubMed ID: 16270556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-color laser-induced incandescence (2C-LII) technique for absolute soot volume fraction measurements in flames.
    De Iuliis S; Cignoli F; Zizak G
    Appl Opt; 2005 Dec; 44(34):7414-23. PubMed ID: 16353814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Forward-illumination light-extinction technique for soot measurement.
    Xu Y; Lee CF
    Appl Opt; 2006 Mar; 45(9):2046-57. PubMed ID: 16579576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of soot self-absorption on color-ratio pyrometry in laminar coflow diffusion flames.
    Kempema NJ; Long MB
    Opt Lett; 2018 Mar; 43(5):1103-1106. PubMed ID: 29489790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-speed carrier-envelope phase drift detection of amplified laser pulses.
    Fordell T; Miranda M; Arnold CL; L'Huillier A
    Opt Express; 2011 Nov; 19(24):23652-7. PubMed ID: 22109390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flame experiments at the advanced light source: new insights into soot formation processes.
    Hansen N; Skeen SA; Michelsen HA; Wilson KR; Kohse-Höinghaus K
    J Vis Exp; 2014 May; (87):. PubMed ID: 24894694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of machine learning for the low-cost prediction of soot concentration in a turbulent flame.
    Khanehzar A; Jadidi M; Zimmer L; Dworkin SB
    Environ Sci Pollut Res Int; 2023 Feb; 30(10):27103-27112. PubMed ID: 36378371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of repetitive pulsing on multi-kHz planar laser-induced incandescence imaging in laminar and turbulent flames.
    Michael JB; Venkateswaran P; Shaddix CR; Meyer TR
    Appl Opt; 2015 Apr; 54(11):3331-44. PubMed ID: 25967321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mass spectrometry up to 1 million mass units for the simultaneous detection of primary soot and of soot precursors (nanoparticles) in flames.
    Grotheer HH; Pokorny H; Barth KL; Thierley M; Aigner M
    Chemosphere; 2004 Dec; 57(10):1335-42. PubMed ID: 15519378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of an improved data analysis approach for combined laser extinction and two-angle elastic light scattering diagnostics of soot aggregates.
    Zhang T; Thomson MJ
    Appl Opt; 2016 Feb; 55(4):920-8. PubMed ID: 26836101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Femtosecond dark-field imaging with an X-ray free electron laser.
    Martin AV; Loh ND; Hampton CY; Sierra RG; Wang F; Aquila A; Bajt S; Barthelmess M; Bostedt C; Bozek JD; Coppola N; Epp SW; Erk B; Fleckenstein H; Foucar L; Frank M; Graafsma H; Gumprecht L; Hartmann A; Hartmann R; Hauser G; Hirsemann H; Holl P; Kassemeyer S; Kimmel N; Liang M; Lomb L; Maia FR; Marchesini S; Nass K; Pedersoli E; Reich C; Rolles D; Rudek B; Rudenko A; Schulz J; Shoeman RL; Soltau H; Starodub D; Steinbrener J; Stellato F; Strüder L; Ullrich J; Weidenspointner G; White TA; Wunderer CB; Barty A; Schlichting I; Bogan MJ; Chapman HN
    Opt Express; 2012 Jun; 20(12):13501-12. PubMed ID: 22714377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring the dynamics of second-order photon correlation functions inside a pulse with picosecond time resolution.
    Assmann M; Veit F; Tempel JS; Berstermann T; Stolz H; van der Poel M; Hvam JM; Bayer M
    Opt Express; 2010 Sep; 18(19):20229-41. PubMed ID: 20940914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.