These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 23263333)

  • 1. Polyvinyl alcohol and polyethylene glycol form polymer bodies in the periplasm of Sphingomonads that are able to assimilate them.
    Kawai F; Kitajima S; Oda K; Higasa T; Charoenpanich J; Hu X; Mamoto R
    Arch Microbiol; 2013 Feb; 195(2):131-40. PubMed ID: 23263333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation of bacteria able to grow on both polyethylene glycol (PEG) and polypropylene glycol (PPG) and their PEG/PPG dehydrogenases.
    Hu X; Fukutani A; Liu X; Kimbara K; Kawai F
    Appl Microbiol Biotechnol; 2007 Jan; 73(6):1407-13. PubMed ID: 17043822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell surface structure enhancing uptake of polyvinyl alcohol (PVA) is induced by PVA in the PVA-utilizing Sphingopyxis sp. strain 113P3.
    Hu X; Mamoto R; Shimomura Y; Kimbara K; Kawai F
    Arch Microbiol; 2007 Sep; 188(3):235-41. PubMed ID: 17453173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyethylene glycol (PEG)-carboxylate-CoA synthetase is involved in PEG metabolism in Sphingopyxis macrogoltabida strain 103.
    Tani A; Somyoonsap P; Minami T; Kimbara K; Kawai F
    Arch Microbiol; 2008 Apr; 189(4):407-10. PubMed ID: 17985114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and conservation of a polyethylene glycol-degradative operon in sphingomonads.
    Tani A; Charoenpanich J; Mori T; Takeichi M; Kimbara K; Kawai F
    Microbiology (Reading); 2007 Feb; 153(Pt 2):338-346. PubMed ID: 17259605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloning and expression of soluble cytochrome c and its role in polyvinyl alcohol degradation by polyvinyl alcohol-utilizing Sphingopyxis sp. strain 113P3.
    Mamoto R; Hu X; Chiue H; Fujioka Y; Kawai F
    J Biosci Bioeng; 2008 Feb; 105(2):147-51. PubMed ID: 18343342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of PEG-carboxylate dehydrogenase and glutathione S-transferase in PEG metabolism by Sphingopyxis macrogoltabida strain 103.
    Somyoonsap P; Tani A; Charoenpanich J; Minami T; Kimbara K; Kawai F
    Appl Microbiol Biotechnol; 2008 Dec; 81(3):473-84. PubMed ID: 18719904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High efficiency preparation and characterization of intact poly(vinyl alcohol) dehydrogenase from Sphingopyxis sp.113P3 in Escherichia coli by inclusion bodies renaturation.
    Jia D; Yang Y; Peng Z; Zhang D; Li J; Liu L; Du G; Chen J
    Appl Biochem Biotechnol; 2014 Mar; 172(5):2540-51. PubMed ID: 24402569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Behavior of synthetic polymers immobilized on a cell membrane.
    Teramura Y; Kaneda Y; Totani T; Iwata H
    Biomaterials; 2008 Apr; 29(10):1345-55. PubMed ID: 18191192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual regulation of a polyethylene glycol degradative operon by AraC-type and GalR-type regulators in Sphingopyxis macrogoltabida strain 103.
    Charoenpanich J; Tani A; Moriwaki N; Kimbara K; Kawai F
    Microbiology (Reading); 2006 Oct; 152(Pt 10):3025-3034. PubMed ID: 17005983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and characterization of a novel poly(vinyl alcohol)-degrading bacterium, Sphingopyxis sp. PVA3.
    Yamatsu A; Matsumi R; Atomi H; Imanaka T
    Appl Microbiol Biotechnol; 2006 Oct; 72(4):804-11. PubMed ID: 16583228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemistry of microbial polyvinyl alcohol degradation.
    Kawai F; Hu X
    Appl Microbiol Biotechnol; 2009 Aug; 84(2):227-37. PubMed ID: 19590867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation, characterization, and application of poly(vinyl alcohol)-graft-poly(ethylene glycol) resins: novel polymer matrices for solid-phase synthesis.
    Luo J; Pardin C; Zhu XX; Lubell WD
    J Comb Chem; 2007; 9(4):582-91. PubMed ID: 17590052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analyses of functional polymer-modified nanoparticles for protein sensing by surface-assisted laser desorption/ionization mass spectrometry coupled with HgTe nanomatrices.
    Chang HY; Huang MF; Hsu CL; Huang CC; Chang HT
    Colloids Surf B Biointerfaces; 2015 Jun; 130():157-63. PubMed ID: 25896538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of polyethylene glycol on the stability of pores in polyvinyl alcohol hydrogels during annealing.
    Bodugoz-Senturk H; Choi J; Oral E; Kung JH; Macias CE; Braithwaite G; Muratoglu OK
    Biomaterials; 2008 Jan; 29(2):141-9. PubMed ID: 17950839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The pva operon is located on the megaplasmid of Sphingopyxis sp. strain 113P3 and is constitutively expressed, although expression is enhanced by PVA.
    Hu X; Mamoto R; Fujioka Y; Tani A; Kimbara K; Kawai F
    Appl Microbiol Biotechnol; 2008 Mar; 78(4):685-93. PubMed ID: 18214469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a cryptic plasmid, pSM103mini, from polyethylene-glycol degrading Sphingopyxis macrogoltabida strain 103.
    Tani A; Tanaka A; Minami T; Kimbara K; Kawai F
    Biosci Biotechnol Biochem; 2011; 75(2):295-8. PubMed ID: 21307601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retention dynamics of amphiphilic polymers PEG-lipids and PVA-Alkyl on the cell surface.
    Inui O; Teramura Y; Iwata H
    ACS Appl Mater Interfaces; 2010 May; 2(5):1514-20. PubMed ID: 20450166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Interaction of lipid membranes and neutral polymers by differential scanning calorimetry (DSC)].
    Grohmann FL; Szógyi M; Csempesz F
    Acta Pharm Hung; 1997 Nov; 67(6):267-72. PubMed ID: 9480622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of polyethylene glycol (PEG) chain organization on the physicochemical properties of poly(D, L-lactide) (PLA) based nanoparticles.
    Essa S; Rabanel JM; Hildgen P
    Eur J Pharm Biopharm; 2010 Jun; 75(2):96-106. PubMed ID: 20211727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.