These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 23264118)

  • 1. Completely-in-the-canal magnet-drive hearing device: a temporal bone study.
    Mahboubi H; Malley MJ; Paulick P; Merlo MW; Bachman M; Djalilian HR
    Otolaryngol Head Neck Surg; 2013 Mar; 148(3):466-8. PubMed ID: 23264118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of a novel completely-in-the-canal direct-drive hearing device: a temporal bone study.
    Mahboubi H; Paulick P; Kiumehr S; Merlo M; Bachman M; Djalilian HR
    Otol Neurotol; 2013 Jan; 34(1):115-20. PubMed ID: 23202151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a novel completely-in-the-canal direct-drive hearing device.
    Djalilian HR; Mahboubi H; Haidar YM; Paulick P; Merlo MW; Bachman M
    Laryngoscope; 2017 Apr; 127(4):932-938. PubMed ID: 27546727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of stapes vibration in Human temporal bones by round window stimulation using a 3-coil transducer.
    Shin DH; Kim DW; Lim HG; Jung ES; Seong KW; Lee JH; Kim MN; Cho JH
    Biomed Mater Eng; 2014; 24(1):405-11. PubMed ID: 24211922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How does closure of tympanic membrane perforations affect hearing and middle ear mechanics? An evaluation in a patient cohort and temporal bone models.
    Röösli C; Sim JH; Chatzimichalis M; Huber AM
    Otol Neurotol; 2012 Apr; 33(3):371-8. PubMed ID: 22222579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite element analysis of the coupling between ossicular chain and mass loading for evaluation of implantable hearing device.
    Wang X; Hu Y; Wang Z; Shi H
    Hear Res; 2011 Oct; 280(1-2):48-57. PubMed ID: 21554941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental study of the acoustic properties of incus replacement prostheses in a human temporal bone model.
    Nishihara S; Goode RL
    Am J Otol; 1994 Jul; 15(4):485-94. PubMed ID: 8588603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo characterization of piezoelectric transducers for implantable hearing AIDS.
    Javel E; Grant IL; Kroll K
    Otol Neurotol; 2003 Sep; 24(5):784-95. PubMed ID: 14501457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A micropower miniature piezoelectric actuator for implantable middle ear hearing device.
    Wang Z; Mills R; Luo H; Zheng X; Hou W; Wang L; Brown SI; Cuschieri A
    IEEE Trans Biomed Eng; 2011 Feb; 58(2):452-8. PubMed ID: 21041151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal-Bone Measurements of the Maximum Equivalent Pressure Output and Maximum Stable Gain of a Light-Driven Hearing System That Mechanically Stimulates the Umbo.
    Puria S; Maria PL; Perkins R
    Otol Neurotol; 2016 Feb; 37(2):160-6. PubMed ID: 26756140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A human temporal bone study of stapes footplate movement.
    Heiland KE; Goode RL; Asai M; Huber AM
    Am J Otol; 1999 Jan; 20(1):81-6. PubMed ID: 9918179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A micro-drive hearing aid: a novel non-invasive hearing prosthesis actuator.
    Paulick PE; Merlo MW; Mahboubi H; Djalilian HR; Bachman M
    Biomed Microdevices; 2014 Dec; 16(6):915-25. PubMed ID: 25129112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Middle ear cavity and ear canal pressure-driven stapes velocity responses in human cadaveric temporal bones.
    O'Connor KN; Puria S
    J Acoust Soc Am; 2006 Sep; 120(3):1517-28. PubMed ID: 17004473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro study of a multi-layer piezoelectric crystal attic hearing implant.
    Mills RP; Wang ZG; Abel EW
    J Laryngol Otol; 2001 May; 115(5):359-62. PubMed ID: 11410124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tympanic membrane collagen fibers: a key to high-frequency sound conduction.
    O'Connor KN; Tam M; Blevins NH; Puria S
    Laryngoscope; 2008 Mar; 118(3):483-90. PubMed ID: 18091335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How does prosthesis head size affect vibration transmission in ossiculoplasty?
    Bance M; Campos A; Wong L; Morris DP; van Wijhe R
    Otolaryngol Head Neck Surg; 2007 Jul; 137(1):70-3. PubMed ID: 17599568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility of Round Window Stimulation by a Novel Electromagnetic Microactuator.
    van Drunen WJ; Mueller M; Glukhovskoy A; Salcher R; Wurz MC; Lenarz T; Maier H
    Biomed Res Int; 2017; 2017():6369247. PubMed ID: 29214174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Percutaneous versus transcutaneous bone conduction implant system: a feasibility study on a cadaver head.
    Håkansson B; Eeg-Olofsson M; Reinfeldt S; Stenfelt S; Granström G
    Otol Neurotol; 2008 Dec; 29(8):1132-9. PubMed ID: 18769364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Cartilage Overlay on the Tympanic Membrane: Lessons From a Temporal Bone Study for Cartilage Tympanoplasty.
    Eldaebes MMAS; Landry TG; Bance ML
    Otol Neurotol; 2018 Sep; 39(8):995-1004. PubMed ID: 29957671
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.