These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
310 related articles for article (PubMed ID: 23264626)
21. Exercise can increase small heat shock proteins (sHSP) and pre- and post-synaptic proteins in the hippocampus. Hu S; Ying Z; Gomez-Pinilla F; Frautschy SA Brain Res; 2009 Jan; 1249():191-201. PubMed ID: 19014914 [TBL] [Abstract][Full Text] [Related]
22. Allosteric heat shock protein 70 inhibitors rapidly rescue synaptic plasticity deficits by reducing aberrant tau. Abisambra J; Jinwal UK; Miyata Y; Rogers J; Blair L; Li X; Seguin SP; Wang L; Jin Y; Bacon J; Brady S; Cockman M; Guidi C; Zhang J; Koren J; Young ZT; Atkins CA; Zhang B; Lawson LY; Weeber EJ; Brodsky JL; Gestwicki JE; Dickey CA Biol Psychiatry; 2013 Sep; 74(5):367-74. PubMed ID: 23607970 [TBL] [Abstract][Full Text] [Related]
23. Pharmacological inhibition of PTEN attenuates cognitive deficits caused by neonatal repeated exposures to isoflurane via inhibition of NR2B-mediated tau phosphorylation in rats. Tan L; Chen X; Wang W; Zhang J; Li S; Zhao Y; Wang J; Luo A Neuropharmacology; 2017 Mar; 114():135-145. PubMed ID: 27836791 [TBL] [Abstract][Full Text] [Related]
24. Molecular chaperone-mediated tau protein metabolism counteracts the formation of granular tau oligomers in human brain. Sahara N; Maeda S; Yoshiike Y; Mizoroki T; Yamashita S; Murayama M; Park JM; Saito Y; Murayama S; Takashima A J Neurosci Res; 2007 Nov; 85(14):3098-108. PubMed ID: 17628496 [TBL] [Abstract][Full Text] [Related]
26. Neuroprotective effects of Cerebrolysin in triple repeat Tau transgenic model of Pick's disease and fronto-temporal tauopathies. Rockenstein E; Ubhi K; Mante M; Florio J; Adame A; Winter S; Brandstaetter H; Meier D; Masliah E BMC Neurosci; 2015 Nov; 16():85. PubMed ID: 26611895 [TBL] [Abstract][Full Text] [Related]
27. Pharmacogenetic neuronal stimulation increases human tau pathology and trans-synaptic spread of tau to distal brain regions in mice. Schultz MK; Gentzel R; Usenovic M; Gretzula C; Ware C; Parmentier-Batteur S; Schachter JB; Zariwala HA Neurobiol Dis; 2018 Oct; 118():161-176. PubMed ID: 30049665 [TBL] [Abstract][Full Text] [Related]
28. Hsp90 co-chaperones, FKBP52 and Aha1, promote tau pathogenesis in aged wild-type mice. Criado-Marrero M; Gebru NT; Blazier DM; Gould LA; Baker JD; Beaulieu-Abdelahad D; Blair LJ Acta Neuropathol Commun; 2021 Apr; 9(1):65. PubMed ID: 33832539 [TBL] [Abstract][Full Text] [Related]
29. A novel transgenic mouse expressing double mutant tau driven by its natural promoter exhibits tauopathy characteristics. Rosenmann H; Grigoriadis N; Eldar-Levy H; Avital A; Rozenstein L; Touloumi O; Behar L; Ben-Hur T; Avraham Y; Berry E; Segal M; Ginzburg I; Abramsky O Exp Neurol; 2008 Jul; 212(1):71-84. PubMed ID: 18490011 [TBL] [Abstract][Full Text] [Related]
30. alpha-Isoform of calcium-calmodulin-dependent protein kinase II and postsynaptic density protein 95 differentially regulate synaptic expression of NR2A- and NR2B-containing N-methyl-d-aspartate receptors in hippocampus. Park CS; Elgersma Y; Grant SG; Morrison JH Neuroscience; 2008 Jan; 151(1):43-55. PubMed ID: 18082335 [TBL] [Abstract][Full Text] [Related]
31. Pseudophosphorylation of Tau at distinct epitopes or the presence of the P301L mutation targets the microtubule-associated protein Tau to dendritic spines. Xia D; Li C; Götz J Biochim Biophys Acta; 2015 May; 1852(5):913-24. PubMed ID: 25558816 [TBL] [Abstract][Full Text] [Related]
32. Neuronal degeneration, synaptic defects, and behavioral abnormalities in tau₄₅₋₂₃₀ transgenic mice. Lang AE; Riherd Methner DN; Ferreira A Neuroscience; 2014 Sep; 275():322-39. PubMed ID: 24952329 [TBL] [Abstract][Full Text] [Related]
33. Lithium treatment arrests the development of neurofibrillary tangles in mutant tau transgenic mice with advanced neurofibrillary pathology. Leroy K; Ando K; Héraud C; Yilmaz Z; Authelet M; Boeynaems JM; Buée L; De Decker R; Brion JP J Alzheimers Dis; 2010; 19(2):705-19. PubMed ID: 20110614 [TBL] [Abstract][Full Text] [Related]
34. The beta-propensity of Tau determines aggregation and synaptic loss in inducible mouse models of tauopathy. Eckermann K; Mocanu MM; Khlistunova I; Biernat J; Nissen A; Hofmann A; Schönig K; Bujard H; Haemisch A; Mandelkow E; Zhou L; Rune G; Mandelkow EM J Biol Chem; 2007 Oct; 282(43):31755-65. PubMed ID: 17716969 [TBL] [Abstract][Full Text] [Related]
35. Resveratrol Rescues Tau-Induced Cognitive Deficits and Neuropathology in a Mouse Model of Tauopathy. Sun XY; Dong QX; Zhu J; Sun X; Zhang LF; Qiu M; Yu XL; Liu RT Curr Alzheimer Res; 2019; 16(8):710-722. PubMed ID: 31368873 [TBL] [Abstract][Full Text] [Related]
36. The potential for beta-structure in the repeat domain of tau protein determines aggregation, synaptic decay, neuronal loss, and coassembly with endogenous Tau in inducible mouse models of tauopathy. Mocanu MM; Nissen A; Eckermann K; Khlistunova I; Biernat J; Drexler D; Petrova O; Schönig K; Bujard H; Mandelkow E; Zhou L; Rune G; Mandelkow EM J Neurosci; 2008 Jan; 28(3):737-48. PubMed ID: 18199773 [TBL] [Abstract][Full Text] [Related]
37. Alzheimer's disease-like tau neuropathology leads to memory deficits and loss of functional synapses in a novel mutated tau transgenic mouse without any motor deficits. Schindowski K; Bretteville A; Leroy K; Bégard S; Brion JP; Hamdane M; Buée L Am J Pathol; 2006 Aug; 169(2):599-616. PubMed ID: 16877359 [TBL] [Abstract][Full Text] [Related]
38. Differential regional distribution of phosphorylated tau and synapse loss in the nucleus accumbens in tauopathy model mice. Kambe T; Motoi Y; Inoue R; Kojima N; Tada N; Kimura T; Sahara N; Yamashita S; Mizoroki T; Takashima A; Shimada K; Ishiguro K; Mizuma H; Onoe H; Mizuno Y; Hattori N Neurobiol Dis; 2011 Jun; 42(3):404-14. PubMed ID: 21324362 [TBL] [Abstract][Full Text] [Related]