These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 23264692)
1. Integration of multiple intraguild predator cues for oviposition decisions by a predatory mite. Walzer A; Schausberger P Anim Behav; 2012 Dec; 84(6):1411-1417. PubMed ID: 23264692 [TBL] [Abstract][Full Text] [Related]
2. Integration of multiple cues allows threat-sensitive anti-intraguild predator responses in predatory mites. Walzer A; Schausberger P Behaviour; 2013 Feb; 150(2):115-132. PubMed ID: 23750040 [TBL] [Abstract][Full Text] [Related]
3. From repulsion to attraction: species- and spatial context-dependent threat sensitive response of the spider mite Tetranychus urticae to predatory mite cues. Fernández Ferrari MC; Schausberger P Naturwissenschaften; 2013 Jun; 100(6):541-9. PubMed ID: 23644512 [TBL] [Abstract][Full Text] [Related]
4. Intraguild interactions among three spider mite predators: predation preference and effects on juvenile development and oviposition. Rahmani H; Daneshmandi A; Walzer A Exp Appl Acarol; 2015 Dec; 67(4):493-505. PubMed ID: 26462926 [TBL] [Abstract][Full Text] [Related]
5. Threat-sensitive anti-intraguild predation behaviour: maternal strategies to reduce offspring predation risk in mites. Walzer A; Schausberger P Anim Behav; 2011 Jan; 81(1):177-184. PubMed ID: 21317973 [TBL] [Abstract][Full Text] [Related]
6. Phenotypic plasticity in anti-intraguild predator strategies: mite larvae adjust their behaviours according to vulnerability and predation risk. Walzer A; Schausberger P Exp Appl Acarol; 2013 May; 60(1):95-115. PubMed ID: 23104106 [TBL] [Abstract][Full Text] [Related]
7. Cues of intraguild predators affect the distribution of intraguild prey. Choh Y; van der Hammen T; Sabelis MW; Janssen A Oecologia; 2010 Jun; 163(2):335-40. PubMed ID: 20354730 [TBL] [Abstract][Full Text] [Related]
8. Maternal intraguild predation risk affects offspring anti-predator behavior and learning in mites. Seiter M; Schausberger P Sci Rep; 2015 Oct; 5():15046. PubMed ID: 26449645 [TBL] [Abstract][Full Text] [Related]
9. Predatory interactions between prey affect patch selection by predators. Choh Y; Sabelis MW; Janssen A Behav Ecol Sociobiol; 2017; 71(4):66. PubMed ID: 28356611 [TBL] [Abstract][Full Text] [Related]
10. Prey preference, intraguild predation and population dynamics of an arthropod food web on plants. Venzon M; Janssen A; Sabelis MW Exp Appl Acarol; 2001; 25(10-11):785-808. PubMed ID: 12455871 [TBL] [Abstract][Full Text] [Related]
11. Predation on heterospecific larvae by adult females of Kampimodromus aberrans, Amblyseius andersoni, Typhlodromus pyri and Phytoseius finitimus (Acari: Phytoseiidae). Ahmad S; Pozzebon A; Duso C Exp Appl Acarol; 2015 Sep; 67(1):1-20. PubMed ID: 26154593 [TBL] [Abstract][Full Text] [Related]
12. Distribution and oviposition site selection by predatory mites in the presence of intraguild predators. Choh Y; Sabelis MW; Janssen A Exp Appl Acarol; 2015 Dec; 67(4):477-91. PubMed ID: 26474858 [TBL] [Abstract][Full Text] [Related]
13. Intraguild interactions between the predatory mites Neoseiulus californicus and Phytoseiulus persimilis. Cakmak I; Janssen A; Sabelis MW Exp Appl Acarol; 2006; 38(1):33-46. PubMed ID: 16550333 [TBL] [Abstract][Full Text] [Related]
14. The predatory mite Phytoseiulus persimilis adjusts patch-leaving to own and progeny prey needs. Vanas V; Enigl M; Walzer A; Schausberger P Exp Appl Acarol; 2006; 39(1):1-11. PubMed ID: 16680562 [TBL] [Abstract][Full Text] [Related]
15. Predators induce egg retention in prey. Montserrat M; Bas C; Magalhães S; Sabelis MW; de Roos AM; Janssen A Oecologia; 2007 Jan; 150(4):699-705. PubMed ID: 16955289 [TBL] [Abstract][Full Text] [Related]
16. Ontogenetic shifts in intraguild predation on thrips by phytoseiid mites: the relevance of body size and diet specialization. Walzer A; Paulus HF; Schausberger P Bull Entomol Res; 2004 Dec; 94(6):577-84. PubMed ID: 15541196 [TBL] [Abstract][Full Text] [Related]
17. Foraging time and spatial patterns of predation in experimental populations : A comparative study of three mite predator-prey systems (Acari: Phytoseiidae, Tetranychidae). Zhang ZQ; Sanderson JP; Nyrop JP Oecologia; 1992 May; 90(2):185-196. PubMed ID: 28313713 [TBL] [Abstract][Full Text] [Related]
18. Behavioural responses of two-spotted spider mites induced by predator-borne and prey-borne cues. Gyuris E; Szép E; Kontschán J; Hettyey A; Tóth Z Behav Processes; 2017 Nov; 144():100-106. PubMed ID: 28882653 [TBL] [Abstract][Full Text] [Related]
19. Risk assessment of non-target effects caused by releasing two exotic phytoseiid mites in Japan: can an indigenous phytoseiid mite become IG prey? Sato Y; Mochizuki A Exp Appl Acarol; 2011 Aug; 54(4):319-29. PubMed ID: 21465332 [TBL] [Abstract][Full Text] [Related]
20. Leaf trichome-mediated predator effects on the distribution of herbivorous mites within a kidney bean plant. Yoshida T; Choh Y Exp Appl Acarol; 2024 Jun; 93(1):155-167. PubMed ID: 38600348 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]