These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 23265256)

  • 1. Quantum-mechanical analysis of the energetic contributions to π stacking in nucleic acids versus rise, twist, and slide.
    Parker TM; Hohenstein EG; Parrish RM; Hud NV; Sherrill CD
    J Am Chem Soc; 2013 Jan; 135(4):1306-16. PubMed ID: 23265256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy component analysis of π interactions.
    Sherrill CD
    Acc Chem Res; 2013 Apr; 46(4):1020-8. PubMed ID: 23020662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of intrinsic stacking energies of ten unique dinucleotide steps in A-RNA and B-DNA duplexes. Can we determine correct order of stability by quantum-chemical calculations?
    Svozil D; Hobza P; Sponer J
    J Phys Chem B; 2010 Jan; 114(2):1191-203. PubMed ID: 20000584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence-dependent DNA structure. The role of base stacking interactions.
    Hunter CA
    J Mol Biol; 1993 Apr; 230(3):1025-54. PubMed ID: 8478917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of the biological backbone on stacking interactions at DNA-protein interfaces: the interplay between the backbone···π and π···π components.
    Churchill CD; Rutledge LR; Wetmore SD
    Phys Chem Chem Phys; 2010 Nov; 12(43):14515-26. PubMed ID: 20927465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The post-SCF quantum chemistry characteristics of the guanine-guanine stacking B-DNA.
    Cysewski P; Czyznikowska Z; Zaleśny R; Czeleń P
    Phys Chem Chem Phys; 2008 May; 10(19):2665-72. PubMed ID: 18464981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence-dependent DNA structure: the role of the sugar-phosphate backbone.
    Packer MJ; Hunter CA
    J Mol Biol; 1998 Jul; 280(3):407-20. PubMed ID: 9665845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-scale symmetry-adapted perturbation theory computations via density fitting and Laplace transformation techniques: investigating the fundamental forces of DNA-intercalator interactions.
    Hohenstein EG; Parrish RM; Sherrill CD; Turney JM; Schaefer HF
    J Chem Phys; 2011 Nov; 135(17):174107. PubMed ID: 22070292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nature and magnitude of aromatic base stacking in DNA and RNA: Quantum chemistry, molecular mechanics, and experiment.
    Sponer J; Sponer JE; Mládek A; Jurečka P; Banáš P; Otyepka M
    Biopolymers; 2013 Dec; 99(12):978-88. PubMed ID: 23784745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revisiting the effects of sequence and structure on the hydrogen bonding and π-stacking interactions in nucleic acids.
    Kamya PR; Muchall HM
    J Phys Chem A; 2011 Nov; 115(45):12800-8. PubMed ID: 21721560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA base-stacking interactions: a comparison of theoretical calculations with oligonucleotide X-ray crystal structures.
    Hunter CA; Lu XJ
    J Mol Biol; 1997 Feb; 265(5):603-19. PubMed ID: 9048952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extended weak bonding interactions in DNA: pi-stacking (base-base), base-backbone, and backbone-backbone interactions.
    Matta CF; Castillo N; Boyd RJ
    J Phys Chem B; 2006 Jan; 110(1):563-78. PubMed ID: 16471569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nature and magnitude of aromatic stacking of nucleic acid bases.
    Sponer J; Riley KE; Hobza P
    Phys Chem Chem Phys; 2008 May; 10(19):2595-610. PubMed ID: 18464974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aromatic Base Stacking in DNA: From ab initio Calculations to Molecular Dynamics Simulations.
    Sponer J; Berger I; Spačková N; Leszczynski J; Hobza P
    J Biomol Struct Dyn; 2000; 17 Suppl 1():1-24. PubMed ID: 22607400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen bonding and stacking of DNA bases: a review of quantum-chemical ab initio studies.
    Sponer J; Leszczynski J; Hobza P
    J Biomol Struct Dyn; 1996 Aug; 14(1):117-35. PubMed ID: 8877568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Density functional theory studies of interactions of ruthenium-arene complexes with base pair steps.
    Mutter ST; Platts JA
    J Phys Chem A; 2011 Oct; 115(41):11293-302. PubMed ID: 21812434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Density-fitted open-shell symmetry-adapted perturbation theory and application to π-stacking in benzene dimer cation and ionized DNA base pair steps.
    Gonthier JF; Sherrill CD
    J Chem Phys; 2016 Oct; 145(13):134106. PubMed ID: 27782424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stacking geometry for non-canonical G:U wobble base pair containing dinucleotide sequences in RNA: dispersion-corrected DFT-D study.
    Mondal M; Mukherjee S; Halder S; Bhattacharyya D
    Biopolymers; 2015 Jun; 103(6):328-38. PubMed ID: 25652776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nature of base stacking: reference quantum-chemical stacking energies in ten unique B-DNA base-pair steps.
    Sponer J; Jurecka P; Marchan I; Luque FJ; Orozco M; Hobza P
    Chemistry; 2006 Mar; 12(10):2854-65. PubMed ID: 16425171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Base-base and deoxyribose-base stacking interactions in B-DNA and Z-DNA: a quantum-chemical study.
    Sponer J; Gabb HA; Leszczynski J; Hobza P
    Biophys J; 1997 Jul; 73(1):76-87. PubMed ID: 9199773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.