These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 23265546)
1. Pattern recognition of peach cultivars (Prunus persica L.) from their volatile components. Montero-Prado P; Bentayeb K; Nerín C Food Chem; 2013 May; 138(1):724-31. PubMed ID: 23265546 [TBL] [Abstract][Full Text] [Related]
2. Impact of the Mediterranean fruit fly (medfly) Ceratitis capitata on different peach cultivars: the possible role of peach volatile compounds. Tabilio MR; Fiorini D; Marcantoni E; Materazzi S; Delfini M; De Salvador FR; Musmeci S Food Chem; 2013 Sep; 140(1-2):375-81. PubMed ID: 23578656 [TBL] [Abstract][Full Text] [Related]
3. Electronic nose to detect volatile compound profile and quality changes in 'spring Belle' peach (Prunus persica L.) during cold storage in relation to fruit optical properties measured by time-resolved reflectance spectroscopy. Rizzolo A; Bianchi G; Vanoli M; Lurie S; Spinelli L; Torricelli A J Agric Food Chem; 2013 Feb; 61(8):1671-85. PubMed ID: 23020286 [TBL] [Abstract][Full Text] [Related]
4. Determination of the volatile profile of stoned table olives from different varieties by using HS-SPME and GC/IT-MS. Malheiro R; de Pinho PG; Casal S; Bento A; Pereira JA J Sci Food Agric; 2011 Jul; 91(9):1693-701. PubMed ID: 21448862 [TBL] [Abstract][Full Text] [Related]
5. Effects of storage temperature, storage duration, and subsequent ripening on the physicochemical characteristics, volatile compounds, and phytochemicals of Western Red nectarine (Prunus persica L. Batsch). Aubert C; Bony P; Chalot G; Landry P; Lurol S J Agric Food Chem; 2014 May; 62(20):4707-24. PubMed ID: 24730460 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of the volatile profile of 33 Pyrus ussuriensis cultivars by HS-SPME with GC-MS. Qin G; Tao S; Cao Y; Wu J; Zhang H; Huang W; Zhang S Food Chem; 2012 Oct; 134(4):2367-82. PubMed ID: 23442698 [TBL] [Abstract][Full Text] [Related]
7. Fruit cuticle composition of a melting and a nonmelting peach cultivar. Belge B; Llovera M; Comabella E; Graell J; Lara I J Agric Food Chem; 2014 Apr; 62(15):3488-95. PubMed ID: 24673591 [TBL] [Abstract][Full Text] [Related]
8. Changes in aroma volatile compounds and ethylene production during "Hujingmilu" peach (Prunus persica L.) fruit development. Zhang XM; Jia HJ Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Feb; 31(1):41-6. PubMed ID: 15692177 [TBL] [Abstract][Full Text] [Related]
9. Cold-storage potential of four yellow-fleshed peach cultivars defined by their volatile compounds emissions, standard quality parameters, and consumer acceptance. Cano-Salazar J; Echeverría G; Crisosto CH; Lopez L J Agric Food Chem; 2012 Feb; 60(5):1266-82. PubMed ID: 22224828 [TBL] [Abstract][Full Text] [Related]
10. A non-targeted approach unravels the volatile network in peach fruit. Sánchez G; Besada C; Badenes ML; Monforte AJ; Granell A PLoS One; 2012; 7(6):e38992. PubMed ID: 22761719 [TBL] [Abstract][Full Text] [Related]
11. Characterization and classification of Western Greek olive oils according to cultivar and geographical origin based on volatile compounds. Pouliarekou E; Badeka A; Tasioula-Margari M; Kontakos S; Longobardi F; Kontominas MG J Chromatogr A; 2011 Oct; 1218(42):7534-42. PubMed ID: 21871634 [TBL] [Abstract][Full Text] [Related]
12. A Comparative Analysis of Floral Scent Compounds in Intraspecific Cultivars of Zhang T; Bao F; Yang Y; Hu L; Ding A; Ding A; Wang J; Cheng T; Zhang Q Molecules; 2019 Dec; 25(1):. PubMed ID: 31905838 [No Abstract] [Full Text] [Related]
13. Free and glycosidically bound aroma compounds in cherry (Prunus avium L.). Wen YQ; He F; Zhu BQ; Lan YB; Pan QH; Li CY; Reeves MJ; Wang J Food Chem; 2014; 152():29-36. PubMed ID: 24444903 [TBL] [Abstract][Full Text] [Related]
14. Postharvest changes in physicochemical properties and volatile constituents of apricot (Prunus armeniaca L.). Characterization of 28 Cultivars. Aubert C; Chanforan C J Agric Food Chem; 2007 Apr; 55(8):3074-82. PubMed ID: 17373818 [TBL] [Abstract][Full Text] [Related]
15. Pattern Recognition of Varieties of Peach Fruit and Pulp from Their Volatile Components and Metabolic Profile Using HS-SPME-GC/MS Combined with Multivariable Statistical Analysis. Mihaylova D; Popova A; Dincheva I Plants (Basel); 2022 Nov; 11(23):. PubMed ID: 36501259 [TBL] [Abstract][Full Text] [Related]
16. Antioxidant capacity, quality, and anthocyanin and nutrient contents of several peach cultivars [Prunus persica (L.) Batsch] grown in Spain. Reig G; Iglesias I; Gatius F; Alegre S J Agric Food Chem; 2013 Jul; 61(26):6344-57. PubMed ID: 23713711 [TBL] [Abstract][Full Text] [Related]
17. Comparison of volatile components in Chinese traditional pickled peppers using HS-SPME-GC-MS, GC-O and multivariate analysis. Xiao ZB; Zhu JC; Feng T; Tian HX; Yu HY; Niu YW; Zhang XM Nat Prod Res; 2010 Dec; 24(20):1939-53. PubMed ID: 21108121 [TBL] [Abstract][Full Text] [Related]
18. E-Nose and GC-MS Reveal a Difference in the Volatile Profiles of White- and Red-Fleshed Peach Fruit. Xin R; Liu X; Wei C; Yang C; Liu H; Cao X; Wu D; Zhang B; Chen K Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29498705 [TBL] [Abstract][Full Text] [Related]