These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 23265603)

  • 1. Epitaxial growth route to crystalline TiO2 nanobelts with optimizable electrochemical performance.
    Gao P; Bao D; Wang Y; Chen Y; Wang L; Yang S; Chen G; Li G; Sun Y; Qin W
    ACS Appl Mater Interfaces; 2013 Jan; 5(2):368-73. PubMed ID: 23265603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controllable synthesis and electrochemical hydrogen storage properties of Sb₂Se₃ ultralong nanobelts with urchin-like structures.
    Jin R; Chen G; Pei J; Sun J; Wang Y
    Nanoscale; 2011 Sep; 3(9):3893-9. PubMed ID: 21842088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrothermal-hydrolysis synthesis and photocatalytic properties of nano-TiO2 with an adjustable crystalline structure.
    Zhang J; Xiao X; Nan J
    J Hazard Mater; 2010 Apr; 176(1-3):617-22. PubMed ID: 20004517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High ethanol sensitivity of palladium/TiO2 nanobelt surface heterostructures dominated by enlarged surface area and nano-Schottky junctions.
    Wang D; Zhou W; Hu P; Guan Y; Chen L; Li J; Wang G; Liu H; Wang J; Cao G; Jiang H
    J Colloid Interface Sci; 2012 Dec; 388(1):144-50. PubMed ID: 23010318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrathin Na1.1V3O7.9 nanobelts with superior performance as cathode materials for lithium-ion batteries.
    Liang S; Zhou J; Fang G; Liu J; Tang Y; Li X; Pan A
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8704-9. PubMed ID: 23947682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanobelt formation of magnesium hydroxide sulfate hydrate via a soft chemistry process.
    Zhou Z; Sun Q; Hu Z; Deng Y
    J Phys Chem B; 2006 Jul; 110(27):13387-92. PubMed ID: 16821859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The large-scale synthesis of one-dimensional TiO2 nanostructures using palladium as catalyst at low temperature.
    Xia M; Zhang Q; Li H; Dai G; Yu H; Wang T; Zou B; Wang Y
    Nanotechnology; 2009 Feb; 20(5):055605. PubMed ID: 19417352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile hydrothermal synthesis of porous TiO2 nanowire electrodes with high-rate capability for Li ion batteries.
    Shim HW; Lee DK; Cho IS; Hong KS; Kim DW
    Nanotechnology; 2010 Jun; 21(25):255706. PubMed ID: 20516576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanopaper based on Ag/TiO2 nanobelts heterostructure for continuous-flow photocatalytic treatment of liquid and gas phase pollutants.
    Zhou W; Du G; Hu P; Yin Y; Li J; Yu J; Wang G; Wang J; Liu H; Wang J; Zhang H
    J Hazard Mater; 2011 Dec; 197():19-25. PubMed ID: 21978584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FTIR study on the formation of TiO2 nanostructures in supercritical CO2.
    Sui R; Rizkalla AS; Charpentier PA
    J Phys Chem B; 2006 Aug; 110(33):16212-8. PubMed ID: 16913745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Template-free formation of vertically oriented TiO2 nanorods with uniform distribution for organics-sensing application.
    Mu Q; Li Y; Zhang Q; Wang H
    J Hazard Mater; 2011 Apr; 188(1-3):363-8. PubMed ID: 21345584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-scale synthesis of single-crystalline RE2O3 (RE=Y, Dy, Ho, Er) nanobelts by a solid-liquid-phase chemical route.
    Han M; Shi NE; Zhang WL; Li BJ; Sun JH; Chen KJ; Zhu JM; Wang X; Xu Z
    Chemistry; 2008; 14(5):1615-20. PubMed ID: 18023078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Ti-O bonds in phase transitions of TiO2.
    Nosheen S; Galasso FS; Suib SL
    Langmuir; 2009 Jul; 25(13):7623-30. PubMed ID: 19453129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coalescence of nanobranches: a new growth mechanism for single crystal nanobelts.
    Yang W; Xie Z; Miao H; Zhang L; An L
    J Phys Chem B; 2006 Mar; 110(9):3969-72. PubMed ID: 16509684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasound with low intensity assisted the synthesis of nanocrystalline TiO2 without calcination.
    Ghows N; Entezari MH
    Ultrason Sonochem; 2010 Jun; 17(5):878-83. PubMed ID: 20382553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The pure shape effect with a removing facet effect of single-crystalline anatase TiO₂ (101) for photocatalytic application.
    Ye L; Liu J; Jiang Z; Peng T; Zan L
    Nanoscale; 2013 Oct; 5(19):9391-6. PubMed ID: 23959467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vanadium pentoxide nanobelts and nanorolls: from controllable synthesis to investigation of their electrochemical properties and photocatalytic activities.
    Li B; Xu Y; Rong G; Jing M; Xie Y
    Nanotechnology; 2006 May; 17(10):2560-6. PubMed ID: 21727505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and characterization of ultrahigh crystalline TiO2 nanotubes.
    Khan MA; Jung HT; Yang OB
    J Phys Chem B; 2006 Apr; 110(13):6626-30. PubMed ID: 16570964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchical LiZnVO4@C nanostructures with enhanced cycling stability for lithium-ion batteries.
    Zeng L; Huang X; Zheng C; Qian Q; Chen Q; Wei M
    Dalton Trans; 2015 May; 44(17):7967-72. PubMed ID: 25826739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous phase- and size-controlled synthesis of TiO(2) nanorods via non-hydrolytic sol-gel reaction of syringe pump delivered precursors.
    Koo B; Park J; Kim Y; Choi SH; Sung YE; Hyeon T
    J Phys Chem B; 2006 Dec; 110(48):24318-23. PubMed ID: 17134182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.