These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 23265660)
1. Superomniphobic surfaces for effective chemical shielding. Pan S; Kota AK; Mabry JM; Tuteja A J Am Chem Soc; 2013 Jan; 135(2):578-81. PubMed ID: 23265660 [TBL] [Abstract][Full Text] [Related]
2. Rational Design of Hyperbranched Nanowire Systems for Tunable Superomniphobic Surfaces Enabled by Atomic Layer Deposition. Bielinski AR; Boban M; He Y; Kazyak E; Lee DH; Wang C; Tuteja A; Dasgupta NP ACS Nano; 2017 Jan; 11(1):478-489. PubMed ID: 28114759 [TBL] [Abstract][Full Text] [Related]
3. Engineering sticky superomniphobic surfaces on transparent and flexible PDMS substrate. Dufour R; Harnois M; Coffinier Y; Thomy V; Boukherroub R; Senez V Langmuir; 2010 Nov; 26(22):17242-7. PubMed ID: 20954730 [TBL] [Abstract][Full Text] [Related]
4. Repellent surfaces. Turning a surface superrepellent even to completely wetting liquids. Liu TL; Kim CJ Science; 2014 Nov; 346(6213):1096-100. PubMed ID: 25430765 [TBL] [Abstract][Full Text] [Related]
5. A modified Cassie-Baxter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces. Choi W; Tuteja A; Mabry JM; Cohen RE; McKinley GH J Colloid Interface Sci; 2009 Nov; 339(1):208-16. PubMed ID: 19683717 [TBL] [Abstract][Full Text] [Related]
6. Quantitative testing of robustness on superomniphobic surfaces by drop impact. Nguyen TP; Brunet P; Coffinier Y; Boukherroub R Langmuir; 2010 Dec; 26(23):18369-73. PubMed ID: 21028759 [TBL] [Abstract][Full Text] [Related]
7. Free-Standing, Flexible, Superomniphobic Films. Vahabi H; Wang W; Movafaghi S; Kota AK ACS Appl Mater Interfaces; 2016 Aug; 8(34):21962-7. PubMed ID: 27541853 [TBL] [Abstract][Full Text] [Related]
11. Flexible and Robust Superomniphobic Surfaces Created by Localized Photofluidization of Azopolymer Pillars. Choi J; Jo W; Lee SY; Jung YS; Kim SH; Kim HT ACS Nano; 2017 Aug; 11(8):7821-7828. PubMed ID: 28715178 [TBL] [Abstract][Full Text] [Related]
13. Sliding droplets on superomniphobic zinc oxide nanostructures. Perry G; Coffinier Y; Thomy V; Boukherroub R Langmuir; 2012 Jan; 28(1):389-95. PubMed ID: 22053956 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of Nanostructured Omniphobic and Superomniphobic Surfaces with Inexpensive CO Pendurthi A; Movafaghi S; Wang W; Shadman S; Yalin AP; Kota AK ACS Appl Mater Interfaces; 2017 Aug; 9(31):25656-25661. PubMed ID: 28731320 [TBL] [Abstract][Full Text] [Related]
15. Why can organic liquids move easily on smooth alkyl-terminated surfaces? Urata C; Masheder B; Cheng DF; Miranda DF; Dunderdale GJ; Miyamae T; Hozumi A Langmuir; 2014 Apr; 30(14):4049-55. PubMed ID: 24660770 [TBL] [Abstract][Full Text] [Related]
16. Metamorphic Superomniphobic Surfaces. Wang W; Salazar J; Vahabi H; Joshi-Imre A; Voit WE; Kota AK Adv Mater; 2017 Jul; 29(27):. PubMed ID: 28485512 [TBL] [Abstract][Full Text] [Related]
18. Self-Healable Superomniphobic Surfaces for Corrosion Protection. Ezazi M; Shrestha B; Klein N; Lee DH; Seo S; Kwon G ACS Appl Mater Interfaces; 2019 Aug; 11(33):30240-30246. PubMed ID: 31339304 [TBL] [Abstract][Full Text] [Related]
19. A Thermodynamic Model for Contact Angle Hysteresis. Extrand CW J Colloid Interface Sci; 1998 Nov; 207(1):11-19. PubMed ID: 9778385 [TBL] [Abstract][Full Text] [Related]