These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 23265823)

  • 21. Anaerobic digestion of lignocellulosic biomass: challenges and opportunities.
    Sawatdeenarunat C; Surendra KC; Takara D; Oechsner H; Khanal SK
    Bioresour Technol; 2015 Feb; 178():178-186. PubMed ID: 25446783
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biotechnological potential of rumen microbiota for sustainable bioconversion of lignocellulosic waste to biofuels and value-added products.
    Bhujbal SK; Ghosh P; Vijay VK; Rathour R; Kumar M; Singh L; Kapley A
    Sci Total Environ; 2022 Mar; 814():152773. PubMed ID: 34979222
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Degradation of plant wastes by anaerobic process using rumen bacteria.
    Seon J; Creuly C; Duchez D; Pons A; Dussap CG
    Water Sci Technol; 2003; 48(4):213-6. PubMed ID: 14531444
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of lignin-derived and furan compounds found in lignocellulosic hydrolysates on biomethane production.
    Barakat A; Monlau F; Steyer JP; Carrere H
    Bioresour Technol; 2012 Jan; 104():90-9. PubMed ID: 22100239
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transformation of bacterial community structure in rumen liquid anaerobic digestion of rice straw.
    Liang J; Zheng W; Zhang H; Zhang P; Cai Y; Wang Q; Zhou Z; Ding Y
    Environ Pollut; 2021 Jan; 269():116130. PubMed ID: 33261966
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mathematical modelling of methanogenic reactor start-up: Importance of volatile fatty acids degrading population.
    Jabłoński SJ; Łukaszewicz M
    Bioresour Technol; 2014 Dec; 174():74-80. PubMed ID: 25463784
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enrichment of lignocellulose-degrading microbial communities from natural and engineered methanogenic environments.
    Ozbayram EG; Kleinsteuber S; Nikolausz M; Ince B; Ince O
    Appl Microbiol Biotechnol; 2018 Jan; 102(2):1035-1043. PubMed ID: 29151162
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Decentralized biorefinery for lignocellulosic biomass: Integrating anaerobic digestion with thermochemical conversion.
    Sawatdeenarunat C; Nam H; Adhikari S; Sung S; Khanal SK
    Bioresour Technol; 2018 Feb; 250():140-147. PubMed ID: 29161573
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anaerobic digestion as final step of a cellulosic ethanol biorefinery: Biogas production from fermentation effluent in a UASB reactor-pilot-scale results.
    Uellendahl H; Ahring BK
    Biotechnol Bioeng; 2010 Sep; 107(1):59-64. PubMed ID: 20506521
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of bioaugmentation by cellulolytic bacteria enriched from sheep rumen on methane production from wheat straw.
    Ozbayram EG; Kleinsteuber S; Nikolausz M; Ince B; Ince O
    Anaerobe; 2017 Aug; 46():122-130. PubMed ID: 28323135
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of inoculum on performance of anaerobic reactors for treating municipal solid waste.
    Lopes WS; Leite VD; Prasad S
    Bioresour Technol; 2004 Sep; 94(3):261-6. PubMed ID: 15182832
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A hybrid anaerobic solid-liquid system for food waste digestion.
    Wang JY; Zhang H; Stabnikova O; Ang SS; Tay JH
    Water Sci Technol; 2005; 52(1-2):223-8. PubMed ID: 16180432
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of bacteria involved in the decomposition of lignocellulosic biomass treated with cow rumen fluid by metagenomic analysis.
    Lee CG; Baba Y; Asano R; Fukuda Y; Tada C; Nakai Y
    J Biosci Bioeng; 2020 Aug; 130(2):137-141. PubMed ID: 32331776
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamics of the anaerobic process: effects of volatile fatty acids.
    Pind PF; Angelidaki I; Ahring BK
    Biotechnol Bioeng; 2003 Jun; 82(7):791-801. PubMed ID: 12701145
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of redox potential on metabolism of glucose in mixed cultures of rumen microorganisms.
    Marounek M; Brezina P; Simůnek J; Bartos S
    Arch Tierernahr; 1991 Jan; 41(1):63-9. PubMed ID: 2048969
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Elucidation mechanism of organic acids production from organic matter (grass) using digested and partially digested cattle feed.
    Sonakya V; Raizada N; Dalhoff R; Wilderer PA
    Water Sci Technol; 2003; 48(8):255-9. PubMed ID: 14682594
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biochemical methane potential and anaerobic biodegradability of non-herbaceous and herbaceous phytomass in biogas production.
    Triolo JM; Pedersen L; Qu H; Sommer SG
    Bioresour Technol; 2012 Dec; 125():226-32. PubMed ID: 23026338
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of nitro compounds and feedstuffs on in vitro methane production in chicken cecal contents and rumen fluid.
    Saengkerdsub S; Kim WK; Anderson RC; Nisbet DJ; Ricke SC
    Anaerobe; 2006 Apr; 12(2):85-92. PubMed ID: 16701620
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-Rate two-phase process for the anaerobic degradation of cellulose, employing rumen microorganisms for an efficient acidogenesis.
    Gijzen HJ; Zwart KB; Verhagen FJ; Vogels GP
    Biotechnol Bioeng; 1988 Apr; 31(5):418-25. PubMed ID: 18584626
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Degradation of lignified secondary cell walls of lucerne (Medicago sativa L.) by rumen fungi growing in methanogenic co-culture.
    Bootten TJ; Joblin KN; McArdle BH; Harris PJ
    J Appl Microbiol; 2011 Nov; 111(5):1086-96. PubMed ID: 21848807
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.