BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 23266410)

  • 41. Bioaccumulation of heavy metals in the earthworms Lumbricus rubellus and Aporrectodea caliginosa in relation to total and available metal concentrations in field soils.
    Hobbelen PH; Koolhaas JE; van Gestel CA
    Environ Pollut; 2006 Nov; 144(2):639-46. PubMed ID: 16530310
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of zinc exposure on earthworms, Lumbricus terrestris, in an artificial soil.
    Lev SM; Matthies N; Snodgrass JW; Casey RE; Ownby DR
    Bull Environ Contam Toxicol; 2010 Jun; 84(6):687-91. PubMed ID: 20431863
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biomarker responses of the earthworm Aporrectodea tuberculata to copper and zinc exposure: differences between populations with and without earlier metal exposure.
    Lukkari T; Taavitsainen M; Soimasuo M; Oikari A; Haimi J
    Environ Pollut; 2004 Jun; 129(3):377-86. PubMed ID: 15016459
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of metal pollution on earthworm communities in a contaminated floodplain area: Linking biomarker, community and functional responses.
    van Gestel CA; Koolhaas JE; Hamers T; van Hoppe M; van Roovert M; Korsman C; Reinecke SA
    Environ Pollut; 2009 Mar; 157(3):895-903. PubMed ID: 19062144
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Inhibition, recovery and oxime-induced reactivation of muscle esterases following chlorpyrifos exposure in the earthworm Lumbricus terrestris.
    Collange B; Wheelock CE; Rault M; Mazzia C; Capowiez Y; Sanchez-Hernandez JC
    Environ Pollut; 2010 Jun; 158(6):2266-72. PubMed ID: 20334963
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Heavy metals affect the coelomocyte-bacteria balance in earthworms: environmental interactions between abiotic and biotic stressors.
    Olchawa E; Bzowska M; Stürzenbaum SR; Morgan AJ; Plytycz B
    Environ Pollut; 2006 Jul; 142(2):373-81. PubMed ID: 16309804
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Metal availability in heavy metal-contaminated open burning and open detonation soil: assessment using soil enzymes, earthworms, and chemical extractions.
    Lee SH; Kim EY; Hyun S; Kim JG
    J Hazard Mater; 2009 Oct; 170(1):382-8. PubMed ID: 19540045
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Remediation of heavy metal-contaminated soils using phosphorus: evaluation of bioavailability using an earthworm bioassay.
    Maenpaa KA; Kukkonen JV; Lydy MJ
    Arch Environ Contam Toxicol; 2002 Nov; 43(4):389-98. PubMed ID: 12399909
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Genotoxicity biomarkers in the assessment of heavy metal effects in mussels: experimental studies.
    Bolognesi C; Landini E; Roggieri P; Fabbri R; Viarengo A
    Environ Mol Mutagen; 1999; 33(4):287-92. PubMed ID: 10398376
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Multibiomarker response in the earthworm Eisenia fetida as tool for assessing multi-walled carbon nanotube ecotoxicity.
    Calisi A; Grimaldi A; Leomanni A; Lionetto MG; Dondero F; Schettino T
    Ecotoxicology; 2016 May; 25(4):677-87. PubMed ID: 26892788
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Metallic trace element body burdens and gene expression analysis of biomarker candidates in Eisenia fetida, using an "exposure/depuration" experimental scheme with field soils.
    Bernard F; Brulle F; Douay F; Lemière S; Demuynck S; Vandenbulcke F
    Ecotoxicol Environ Saf; 2010 Jul; 73(5):1034-45. PubMed ID: 20149457
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Polyester-derived microfibre impacts on the soil-dwelling earthworm Lumbricus terrestris.
    Prendergast-Miller MT; Katsiamides A; Abbass M; Sturzenbaum SR; Thorpe KL; Hodson ME
    Environ Pollut; 2019 Aug; 251():453-459. PubMed ID: 31103005
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Influence of flooding and metal immobilising soil amendments on availability of metals for willows and earthworms in calcareous dredged sediment-derived soils.
    Vandecasteele B; Du Laing G; Lettens S; Jordaens K; Tack FM
    Environ Pollut; 2010 Jun; 158(6):2181-8. PubMed ID: 20347195
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cloning, expression, and characterization of cadmium-induced metallothionein-2 from the earthworms Metaphire posthuma and Polypheretima elongata.
    Liang SH; Jeng YP; Chiu YW; Chen JH; Shieh BS; Chen CY; Chen CC
    Comp Biochem Physiol C Toxicol Pharmacol; 2009 Apr; 149(3):349-57. PubMed ID: 18834958
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of formalin on some biomarker activities of earthworms pre-exposed to temephos.
    Velki M; Stepić S; Hackenberger BK
    Chemosphere; 2013 Mar; 90(11):2690-6. PubMed ID: 23298666
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Application of a biomarker battery for the evaluation of the sublethal effects of pollutants in the earthworm Eisenia andrei.
    Gastaldi L; Ranzato E; Caprì F; Hankard P; Pérès G; Canesi L; Viarengo A; Pons G
    Comp Biochem Physiol C Toxicol Pharmacol; 2007 Sep; 146(3):398-405. PubMed ID: 17567537
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Impacts of epigeic, anecic and endogeic earthworms on metal and metalloid mobility and availability.
    Sizmur T; Tilston EL; Charnock J; Palumbo-Roe B; Watts MJ; Hodson ME
    J Environ Monit; 2011 Feb; 13(2):266-73. PubMed ID: 21161093
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Arsenic speciation in field-collected and laboratory-exposed earthworms Lumbricus terrestris.
    Button M; Moriarty MM; Watts MJ; Zhang J; Koch I; Reimer KJ
    Chemosphere; 2011 Nov; 85(8):1277-83. PubMed ID: 21868054
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Oxidative stress in earthworms short- and long-term exposed to highly Hg-contaminated soils.
    Colacevich A; Sierra MJ; Borghini F; Millán R; Sanchez-Hernandez JC
    J Hazard Mater; 2011 Oct; 194():135-43. PubMed ID: 21871720
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Metal accumulation in the earthworm Lumbricus rubellus. Model predictions compared to field data.
    Veltman K; Huijbregts MA; Vijver MG; Peijnenburg WJ; Hobbelen PH; Koolhaas JE; van Gestel CA; van Vliet PC; Hendriks AJ
    Environ Pollut; 2007 Mar; 146(2):428-36. PubMed ID: 16938367
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.