These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 23266854)

  • 1. Biochemical methane potential of raw and pre-treated meat-processing wastes.
    Cavaleiro AJ; Ferreira T; Pereira F; Tommaso G; Alves MM
    Bioresour Technol; 2013 Feb; 129():519-25. PubMed ID: 23266854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of pre-treatments on hydrolysis and methane production potentials of by-products from meat-processing industry.
    Luste S; Luostarinen S; Sillanpää M
    J Hazard Mater; 2009 May; 164(1):247-55. PubMed ID: 18805637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical methane potential, biodegradability, alkali treatment and influence of chemical composition on methane yield of yard wastes.
    Gunaseelan VN
    Waste Manag Res; 2016 Mar; 34(3):195-204. PubMed ID: 26790450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solubilization of waste activated sludge by alkaline pretreatment and biochemical methane potential (BMP) tests for anaerobic co-digestion of municipal organic waste.
    Heo NH; Park SC; Lee JS; Kang H
    Water Sci Technol; 2003; 48(8):211-9. PubMed ID: 14682589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility of anaerobic co-digestion as a treatment option of meat industry wastes.
    Buendía IM; Fernández FJ; Villaseñor J; Rodríguez L
    Bioresour Technol; 2009 Mar; 100(6):1903-9. PubMed ID: 19046880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-digestion of dairy cattle slurry and industrial meat-processing by-products--effect of ultrasound and hygienization pre-treatments.
    Luste S; Heinonen-Tanski H; Luostarinen S
    Bioresour Technol; 2012 Jan; 104():195-201. PubMed ID: 22119434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of thermal pre-treatments on solid slaughterhouse waste methane potential.
    Rodríguez-Abalde A; Fernández B; Silvestre G; Flotats X
    Waste Manag; 2011 Jul; 31(7):1488-93. PubMed ID: 21419615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The anaerobic co-digestion of food waste and cattle manure.
    Zhang C; Xiao G; Peng L; Su H; Tan T
    Bioresour Technol; 2013 Feb; 129():170-6. PubMed ID: 23246757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased biogas production at wastewater treatment plants through co-digestion of sewage sludge with grease trap sludge from a meat processing plant.
    Luostarinen S; Luste S; Sillanpää M
    Bioresour Technol; 2009 Jan; 100(1):79-85. PubMed ID: 18707877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An assessment of the feasibility of employing biochemical acidogenic potential tests for characterizing anaerobic biodegradability of raw and pretreated waste activated sludge.
    Kianmehr P; Parker W; Seto P
    Water Environ Res; 2012 Apr; 84(4):362-9. PubMed ID: 22834225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the biomethane potential of solid fish waste.
    Eiroa M; Costa JC; Alves MM; Kennes C; Veiga MC
    Waste Manag; 2012 Jul; 32(7):1347-52. PubMed ID: 22520161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mesophilic and thermophilic anaerobic biodegradability of water hyacinth pre-treated at 80 degrees C.
    Ferrer I; Palatsi J; Campos E; Flotats X
    Waste Manag; 2010 Oct; 30(10):1763-7. PubMed ID: 19837577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical methane potential (BMP) of agro-food wastes from the Cider Region (Spain).
    Nieto PP; Hidalgo D; Irusta R; Kraut D
    Water Sci Technol; 2012; 66(9):1842-8. PubMed ID: 22925854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anaerobic co-digestion of livestock and vegetable processing wastes: fibre degradation and digestate stability.
    Molinuevo-Salces B; Gómez X; Morán A; García-González MC
    Waste Manag; 2013 Jun; 33(6):1332-8. PubMed ID: 23540357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobic co-digestion of coffee waste and sewage sludge.
    Neves L; Oliveira R; Alves MM
    Waste Manag; 2006; 26(2):176-81. PubMed ID: 16310117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical methane potential of vegetable wastes.
    Kavitha ES; Joseph K
    J Environ Sci Eng; 2007 Oct; 49(4):259-64. PubMed ID: 18476372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of microwave irradiation on anaerobic degradability of model kitchen waste.
    Marin J; Kennedy KJ; Eskicioglu C
    Waste Manag; 2010 Oct; 30(10):1772-9. PubMed ID: 20171866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical methane potential and anaerobic biodegradability of non-herbaceous and herbaceous phytomass in biogas production.
    Triolo JM; Pedersen L; Qu H; Sommer SG
    Bioresour Technol; 2012 Dec; 125():226-32. PubMed ID: 23026338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomethanation potential of macroalgae Ulva spp. and Gracilaria spp. and in co-digestion with waste activated sludge.
    Costa JC; Gonçalves PR; Nobre A; Alves MM
    Bioresour Technol; 2012 Jun; 114():320-6. PubMed ID: 22459959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of composition on the biomethanation potential of restaurant waste at mesophilic temperatures.
    Neves L; Gonçalo E; Oliveira R; Alves MM
    Waste Manag; 2008; 28(6):965-72. PubMed ID: 17601723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.