BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 23267316)

  • 1. High-density microelectrode array recordings and real-time spike sorting for closed-loop experiments: an emerging technology to study neural plasticity.
    Franke F; Jäckel D; Dragas J; Müller J; Radivojevic M; Bakkum D; Hierlemann A
    Front Neural Circuits; 2012; 6():105. PubMed ID: 23267316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Applicability of independent component analysis on high-density microelectrode array recordings.
    Jäckel D; Frey U; Fiscella M; Franke F; Hierlemann A
    J Neurophysiol; 2012 Jul; 108(1):334-48. PubMed ID: 22490552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated in vivo patch-clamp evaluation of extracellular multielectrode array spike recording capability.
    Allen BD; Moore-Kochlacs C; Bernstein JG; Kinney JP; Scholvin J; Seoane LF; Chronopoulos C; Lamantia C; Kodandaramaiah SB; Tegmark M; Boyden ES
    J Neurophysiol; 2018 Nov; 120(5):2182-2200. PubMed ID: 29995597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unsupervised neural spike sorting for high-density microelectrode arrays with convolutive independent component analysis.
    Leibig C; Wachtler T; Zeck G
    J Neurosci Methods; 2016 Sep; 271():1-13. PubMed ID: 27317497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Neuromorphic Brain Interface based on RRAM Crossbar Arrays for High Throughput Real-time Spike Sorting.
    Shi Y; Ananthakrishnan A; Oh S; Liu X; Hota G; Cauwenberghs G; Kuzum D
    IEEE Trans Electron Devices; 2022 Apr; 69(4):2137-2144. PubMed ID: 37168652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-latency single channel real-time neural spike sorting system based on template matching.
    Wang PK; Pun SH; Chen CH; McCullagh EA; Klug A; Li A; Vai MI; Mak PU; Lei TC
    PLoS One; 2019; 14(11):e0225138. PubMed ID: 31756211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revealing neuronal function through microelectrode array recordings.
    Obien ME; Deligkaris K; Bullmann T; Bakkum DJ; Frey U
    Front Neurosci; 2014; 8():423. PubMed ID: 25610364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro studies of neuronal networks and synaptic plasticity in invertebrates and in mammals using multielectrode arrays.
    Massobrio P; Tessadori J; Chiappalone M; Ghirardi M
    Neural Plast; 2015; 2015():196195. PubMed ID: 25866681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Closed-loop control of neural spike rate of cultured neurons using a thermoplasmonics-based photothermal neural stimulation.
    An Y; Nam Y
    J Neural Eng; 2021 Nov; 18(6):. PubMed ID: 34678786
    [No Abstract]   [Full Text] [Related]  

  • 10. Towards online spike sorting for high-density neural probes using discriminative template matching with suppression of interfering spikes.
    Wouters J; Kloosterman F; Bertrand A
    J Neural Eng; 2018 Oct; 15(5):056005. PubMed ID: 29932426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural spike sorting using iterative ICA and a deflation-based approach.
    Tiganj Z; Mboup M
    J Neural Eng; 2012 Dec; 9(6):066002. PubMed ID: 23075499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 128-Channel FPGA-Based Real-Time Spike-Sorting Bidirectional Closed-Loop Neural Interface System.
    Park J; Kim G; Jung SD
    IEEE Trans Neural Syst Rehabil Eng; 2017 Dec; 25(12):2227-2238. PubMed ID: 28459692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploiting All Programmable SoCs in Neural Signal Analysis: A Closed-Loop Control for Large-Scale CMOS Multielectrode Arrays.
    Seu GP; Angotzi GN; Boi F; Raffo L; Berdondini L; Meloni P
    IEEE Trans Biomed Circuits Syst; 2018 Aug; 12(4):839-850. PubMed ID: 29993584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ViSAPy: a Python tool for biophysics-based generation of virtual spiking activity for evaluation of spike-sorting algorithms.
    Hagen E; Ness TV; Khosrowshahi A; Sørensen C; Fyhn M; Hafting T; Franke F; Einevoll GT
    J Neurosci Methods; 2015 Apr; 245():182-204. PubMed ID: 25662445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Employing ICA and SOM for spike sorting of multielectrode recordings from CNS.
    Hermle T; Schwarz C; Bogdan M
    J Physiol Paris; 2004; 98(4-6):349-56. PubMed ID: 16290927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simultaneous optical and electrical in-vitro neuronal recording system to evaluate microelectrode performance.
    Aqrawe Z; Patel N; Vyas Y; Bansal M; Montgomery J; Travas-Sejdic J; Svirskis D
    PLoS One; 2020; 15(8):e0237709. PubMed ID: 32817653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scaling Spike Detection and Sorting for Next-Generation Electrophysiology.
    Hennig MH; Hurwitz C; Sorbaro M
    Adv Neurobiol; 2019; 22():171-184. PubMed ID: 31073936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Skeletal myotube integration with planar microelectrode arrays in vitro for spatially selective recording and stimulation: a comparison of neuronal and myotube extracellular action potentials.
    Langhammer CG; Kutzing MK; Luo V; Zahn JD; Firestein BL
    Biotechnol Prog; 2011; 27(3):891-5. PubMed ID: 21574266
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.