These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

559 related articles for article (PubMed ID: 23267474)

  • 1. Variable time-stepping in the pathwise numerical solution of the chemical Langevin equation.
    Ilie S
    J Chem Phys; 2012 Dec; 137(23):234110. PubMed ID: 23267474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An adaptive stepsize method for the chemical Langevin equation.
    Ilie S; Teslya A
    J Chem Phys; 2012 May; 136(18):184101. PubMed ID: 22583271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An adaptive time step scheme for a system of stochastic differential equations with multiple multiplicative noise: chemical Langevin equation, a proof of concept.
    Sotiropoulos V; Kaznessis YN
    J Chem Phys; 2008 Jan; 128(1):014103. PubMed ID: 18190181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions.
    Salis H; Kaznessis Y
    J Chem Phys; 2005 Feb; 122(5):54103. PubMed ID: 15740306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A constrained approach to multiscale stochastic simulation of chemically reacting systems.
    Cotter SL; Zygalakis KC; Kevrekidis IG; Erban R
    J Chem Phys; 2011 Sep; 135(9):094102. PubMed ID: 21913748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linear noise approximation is valid over limited times for any chemical system that is sufficiently large.
    Wallace EW; Gillespie DT; Sanft KR; Petzold LR
    IET Syst Biol; 2012 Aug; 6(4):102-15. PubMed ID: 23039691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast stochastic simulation of biochemical reaction systems by alternative formulations of the chemical Langevin equation.
    Mélykúti B; Burrage K; Zygalakis KC
    J Chem Phys; 2010 Apr; 132(16):164109. PubMed ID: 20441260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An equation-free probabilistic steady-state approximation: dynamic application to the stochastic simulation of biochemical reaction networks.
    Salis H; Kaznessis YN
    J Chem Phys; 2005 Dec; 123(21):214106. PubMed ID: 16356038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stochastic simulation of chemical kinetics.
    Gillespie DT
    Annu Rev Phys Chem; 2007; 58():35-55. PubMed ID: 17037977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction and solution of the chemical master equation using time scale separation and finite state projection.
    Peles S; Munsky B; Khammash M
    J Chem Phys; 2006 Nov; 125(20):204104. PubMed ID: 17144687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developing Itô stochastic differential equation models for neuronal signal transduction pathways.
    Manninen T; Linne ML; Ruohonen K
    Comput Biol Chem; 2006 Aug; 30(4):280-91. PubMed ID: 16880117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The complex chemical Langevin equation.
    Schnoerr D; Sanguinetti G; Grima R
    J Chem Phys; 2014 Jul; 141(2):024103. PubMed ID: 25027995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stochastic chemical kinetics and the total quasi-steady-state assumption: application to the stochastic simulation algorithm and chemical master equation.
    Macnamara S; Bersani AM; Burrage K; Sidje RB
    J Chem Phys; 2008 Sep; 129(9):095105. PubMed ID: 19044893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An efficient finite-difference strategy for sensitivity analysis of stochastic models of biochemical systems.
    Morshed M; Ingalls B; Ilie S
    Biosystems; 2017 Jan; 151():43-52. PubMed ID: 27914944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Moment estimation for chemically reacting systems by extended Kalman filtering.
    Ruess J; Milias-Argeitis A; Summers S; Lygeros J
    J Chem Phys; 2011 Oct; 135(16):165102. PubMed ID: 22047267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A variational approach to the stochastic aspects of cellular signal transduction.
    Lan Y; Wolynes PG; Papoian GA
    J Chem Phys; 2006 Sep; 125(12):124106. PubMed ID: 17014165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model reduction of multiscale chemical langevin equations: a numerical case study.
    Sotiropoulos V; Contou-Carrere MN; Daoutidis P; Kaznessis YN
    IEEE/ACM Trans Comput Biol Bioinform; 2009; 6(3):470-82. PubMed ID: 19644174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generating transition paths by Langevin bridges.
    Orland H
    J Chem Phys; 2011 May; 134(17):174114. PubMed ID: 21548680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiresolution stochastic simulations of reaction-diffusion processes.
    Bayati B; Chatelain P; Koumoutsakos P
    Phys Chem Chem Phys; 2008 Oct; 10(39):5963-6. PubMed ID: 18825283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The finite state projection algorithm for the solution of the chemical master equation.
    Munsky B; Khammash M
    J Chem Phys; 2006 Jan; 124(4):044104. PubMed ID: 16460146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.