These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 23267729)
1. Carbamazepine and naproxen: fate in wetland mesocosms planted with Scirpus validus. Zhang DQ; Hua T; Gersberg RM; Zhu J; Ng WJ; Tan SK Chemosphere; 2013 Mar; 91(1):14-21. PubMed ID: 23267729 [TBL] [Abstract][Full Text] [Related]
2. Fate of caffeine in mesocosms wetland planted with Scirpus validus. Zhang DQ; Hua T; Gersberg RM; Zhu J; Ng WJ; Tan SK Chemosphere; 2013 Jan; 90(4):1568-72. PubMed ID: 23079164 [TBL] [Abstract][Full Text] [Related]
3. Fate of pharmaceutical compounds in hydroponic mesocosms planted with Scirpus validus. Zhang DQ; Gersberg RM; Hua T; Zhu J; Goyal MK; Ng WJ; Tan SK Environ Pollut; 2013 Oct; 181():98-106. PubMed ID: 23845767 [TBL] [Abstract][Full Text] [Related]
4. Assessment of plant-driven uptake and translocation of clofibric acid by Scirpus validus. Zhang DQ; Gersberg RM; Hua T; Zhu J; Ng WJ; Tan SK Environ Sci Pollut Res Int; 2013 Jul; 20(7):4612-20. PubMed ID: 23274803 [TBL] [Abstract][Full Text] [Related]
5. Batch versus continuous feeding strategies for pharmaceutical removal by subsurface flow constructed wetland. Zhang DQ; Gersberg RM; Zhu J; Hua T; Jinadasa KB; Tan SK Environ Pollut; 2012 Aug; 167():124-31. PubMed ID: 22564400 [TBL] [Abstract][Full Text] [Related]
6. Fate of perchlorate-contaminated water in upflow wetlands. Tan K; Jackson WA; Anderson TA; Pardue JH Water Res; 2004 Nov; 38(19):4173-85. PubMed ID: 15491665 [TBL] [Abstract][Full Text] [Related]
7. Interactive effects of nitrogen and phosphorus loadings on nutrient removal from simulated wastewater using Schoenoplectus validus in wetland microcosms. Zhang Z; Rengel Z; Meney K Chemosphere; 2008 Aug; 72(11):1823-8. PubMed ID: 18561977 [TBL] [Abstract][Full Text] [Related]
8. Macrophytes may not contribute significantly to removal of nutrients, pharmaceuticals, and antibiotic resistance in model surface constructed wetlands. Cardinal P; Anderson JC; Carlson JC; Low JE; Challis JK; Beattie SA; Bartel CN; Elliott AD; Montero OF; Lokesh S; Favreau A; Kozlova TA; Knapp CW; Hanson ML; Wong CS Sci Total Environ; 2014 Jun; 482-483():294-304. PubMed ID: 24657374 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of aquatic plants for removing polar microcontaminants: a microcosm experiment. Matamoros V; Nguyen LX; Arias CA; Salvadó V; Brix H Chemosphere; 2012 Aug; 88(10):1257-64. PubMed ID: 22560181 [TBL] [Abstract][Full Text] [Related]
10. Pharmaceutical removal in tropical subsurface flow constructed wetlands at varying hydraulic loading rates. Zhang DQ; Gersberg RM; Hua T; Zhu J; Tuan NA; Tan SK Chemosphere; 2012 Apr; 87(3):273-7. PubMed ID: 22264861 [TBL] [Abstract][Full Text] [Related]
11. Late season pharmaceutical fate in wetland mesocosms with and without phosphorous addition. Cardinal P; Anderson JC; Carlson JC; Low JE; Challis JK; Wong CS; Hanson ML Environ Sci Pollut Res Int; 2016 Nov; 23(22):22678-22690. PubMed ID: 27557971 [TBL] [Abstract][Full Text] [Related]
12. Laboratory study of heavy metal phytoremediation by three wetland macrophytes. Weiss J; Hondzo M; Biesboer D; Semmens M Int J Phytoremediation; 2006; 8(3):245-59. PubMed ID: 17120528 [TBL] [Abstract][Full Text] [Related]
13. Copper uptake and translocation in a submerged aquatic plant Hydrilla verticillata (L.f.) Royle. Xue PY; Li GX; Liu WJ; Yan CZ Chemosphere; 2010 Nov; 81(9):1098-103. PubMed ID: 20934737 [TBL] [Abstract][Full Text] [Related]
14. Effect of plant species on water quality at the outlet of a sludge treatment wetland. Gagnon V; Chazarenc F; Kõiv M; Brisson J Water Res; 2012 Oct; 46(16):5305-15. PubMed ID: 22828383 [TBL] [Abstract][Full Text] [Related]
15. Biological removal of pharmaceuticals by Navicula sp. and biotransformation of bezafibrate. Ding T; Wang S; Yang B; Li J Chemosphere; 2020 Feb; 240():124949. PubMed ID: 31568949 [TBL] [Abstract][Full Text] [Related]
16. Environmental fate of naproxen, carbamazepine and triclosan in wastewater, surface water and wastewater irrigated soil - Results of laboratory scale experiments. Durán-Álvarez JC; Prado B; González D; Sánchez Y; Jiménez-Cisneros B Sci Total Environ; 2015 Dec; 538():350-62. PubMed ID: 26312409 [TBL] [Abstract][Full Text] [Related]
17. The role of sorption and biodegradation in the removal of acetaminophen, carbamazepine, caffeine, naproxen and sulfamethoxazole during soil contact: A kinetics study. Martínez-Hernández V; Meffe R; Herrera López S; de Bustamante I Sci Total Environ; 2016 Jul; 559():232-241. PubMed ID: 27070381 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of carbamazepine uptake and metabolization by Typha spp., a plant with potential use in phytotreatment. Dordio AV; Belo M; Martins Teixeira D; Palace Carvalho AJ; Dias CM; Picó Y; Pinto AP Bioresour Technol; 2011 Sep; 102(17):7827-34. PubMed ID: 21745739 [TBL] [Abstract][Full Text] [Related]
19. Capacity of a horizontal subsurface flow constructed wetland system for the removal of emerging pollutants: an injection experiment. Avila C; Pedescoll A; Matamoros V; Bayona JM; García J Chemosphere; 2010 Nov; 81(9):1137-42. PubMed ID: 20864142 [TBL] [Abstract][Full Text] [Related]
20. Temporal evolution in PPCP removal from urban wastewater by constructed wetlands of different configuration: a medium-term study. Reyes-Contreras C; Hijosa-Valsero M; Sidrach-Cardona R; Bayona JM; Bécares E Chemosphere; 2012 Jun; 88(2):161-7. PubMed ID: 22436587 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]