BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 23268384)

  • 1. A brain-machine interface to navigate a mobile robot in a planar workspace: enabling humans to fly simulated aircraft with EEG.
    Akce A; Johnson M; Dantsker O; Bretl T
    IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):306-18. PubMed ID: 23268384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Error-related EEG potentials generated during simulated brain-computer interaction.
    Ferrez PW; del R Millan J
    IEEE Trans Biomed Eng; 2008 Mar; 55(3):923-9. PubMed ID: 18334383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation of fronto-central phase coupling with sensorimotor rhythm modulation.
    Chung YG; Kang JH; Kim SP
    Neural Netw; 2012 Dec; 36():46-50. PubMed ID: 23037775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of a humanoid robot by a noninvasive brain-computer interface in humans.
    Bell CJ; Shenoy P; Chalodhorn R; Rao RP
    J Neural Eng; 2008 Jun; 5(2):214-20. PubMed ID: 18483450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain-computer interfaces based on visual evoked potentials.
    Wang Y; Gao X; Hong B; Jia C; Gao S
    IEEE Eng Med Biol Mag; 2008; 27(5):64-71. PubMed ID: 18799392
    [No Abstract]   [Full Text] [Related]  

  • 6. A self-paced brain-computer interface for controlling a robot simulator: an online event labelling paradigm and an extended Kalman filter based algorithm for online training.
    Tsui CS; Gan JQ; Roberts SJ
    Med Biol Eng Comput; 2009 Mar; 47(3):257-65. PubMed ID: 19225819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. My thoughts through a robot's eyes: an augmented reality-brain-machine interface.
    Kansaku K; Hata N; Takano K
    Neurosci Res; 2010 Feb; 66(2):219-22. PubMed ID: 19853630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. P300-based brain-computer interface for environmental control: an asynchronous approach.
    Aloise F; Schettini F; Aricò P; Leotta F; Salinari S; Mattia D; Babiloni F; Cincotti F
    J Neural Eng; 2011 Apr; 8(2):025025. PubMed ID: 21436520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A telepresence mobile robot controlled with a noninvasive brain-computer interface.
    Escolano C; Antelis JM; Minguez J
    IEEE Trans Syst Man Cybern B Cybern; 2012 Jun; 42(3):793-804. PubMed ID: 22180512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noninvasive brain-actuated control of a mobile robot by human EEG.
    Millán Jdel R; Renkens F; Mouriño J; Gerstner W
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):1026-33. PubMed ID: 15188874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning for real-time single-trial EEG-analysis: from brain-computer interfacing to mental state monitoring.
    Müller KR; Tangermann M; Dornhege G; Krauledat M; Curio G; Blankertz B
    J Neurosci Methods; 2008 Jan; 167(1):82-90. PubMed ID: 18031824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Berlin Brain--Computer Interface: accurate performance from first-session in BCI-naïve subjects.
    Blankertz B; Losch F; Krauledat M; Dornhege G; Curio G; Müller KR
    IEEE Trans Biomed Eng; 2008 Oct; 55(10):2452-62. PubMed ID: 18838371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of on-line adaptive discriminant analysis for EEG-based brain computer interfaces.
    Vidaurre C; Schlögl A; Cabeza R; Scherer R; Pfurtscheller G
    IEEE Trans Biomed Eng; 2007 Mar; 54(3):550-6. PubMed ID: 17355071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A self-paced motor imagery based brain-computer interface for robotic wheelchair control.
    Tsui CS; Gan JQ; Hu H
    Clin EEG Neurosci; 2011 Oct; 42(4):225-9. PubMed ID: 22208119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classification of motor imagery tasks for brain-computer interface applications by means of two equivalent dipoles analysis.
    Kamousi B; Liu Z; He B
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):166-71. PubMed ID: 16003895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous shared control for stabilizing reaching and grasping with brain-machine interfaces.
    Kim HK; Biggs SJ; Schloerb DW; Carmena JM; Lebedev MA; Nicolelis MA; Srinivasan MA
    IEEE Trans Biomed Eng; 2006 Jun; 53(6):1164-73. PubMed ID: 16761843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain-computer interface.
    Neuper C; Scherer R; Wriessnegger S; Pfurtscheller G
    Clin Neurophysiol; 2009 Feb; 120(2):239-47. PubMed ID: 19121977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A two-class self-paced BCI to control a robot in four directions.
    Ron-Angevin R; Velasco-Alvarez F; Sancha-Ros S; da Silva-Sauer L
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975486. PubMed ID: 22275683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced performance by a hybrid NIRS-EEG brain computer interface.
    Fazli S; Mehnert J; Steinbrink J; Curio G; Villringer A; Müller KR; Blankertz B
    Neuroimage; 2012 Jan; 59(1):519-29. PubMed ID: 21840399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A brain-computer interface method combined with eye tracking for 3D interaction.
    Lee EC; Woo JC; Kim JH; Whang M; Park KR
    J Neurosci Methods; 2010 Jul; 190(2):289-98. PubMed ID: 20580646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.