BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 23268597)

  • 1. Backtracking due to residual structure in the unfolded state changes the folding of the third fibronectin type III domain from tenascin-C.
    Tripathi S; Makhatadze GI; Garcia AE
    J Phys Chem B; 2013 Jan; 117(3):800-10. PubMed ID: 23268597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic partitioning mechanism governs the folding of the third FnIII domain of tenascin-C: evidence at the single-molecule level.
    Peng Q; Fang J; Wang M; Li H
    J Mol Biol; 2011 Sep; 412(4):698-709. PubMed ID: 21839747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of boundary selection on the stability and folding of the third fibronectin type III domain from human tenascin.
    Hamill SJ; Meekhof AE; Clarke J
    Biochemistry; 1998 Jun; 37(22):8071-9. PubMed ID: 9609701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The folding nucleus of a fibronectin type III domain is composed of core residues of the immunoglobulin-like fold.
    Cota E; Steward A; Fowler SB; Clarke J
    J Mol Biol; 2001 Feb; 305(5):1185-94. PubMed ID: 11162123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulating the mechanical stability of extracellular matrix protein tenascin-C in a controlled and reversible fashion.
    Zhuang S; Peng Q; Cao Y; Li H
    J Mol Biol; 2009 Jul; 390(4):820-9. PubMed ID: 19477181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The folding of an immunoglobulin-like Greek key protein is defined by a common-core nucleus and regions constrained by topology.
    Hamill SJ; Steward A; Clarke J
    J Mol Biol; 2000 Mar; 297(1):165-78. PubMed ID: 10704314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the transition states for folding of two Ig-like proteins from different superfamilies.
    Geierhaas CD; Paci E; Vendruscolo M; Clarke J
    J Mol Biol; 2004 Oct; 343(4):1111-23. PubMed ID: 15476825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Folding and stability of a fibronectin type III domain of human tenascin.
    Clarke J; Hamill SJ; Johnson CM
    J Mol Biol; 1997 Aug; 270(5):771-8. PubMed ID: 9245604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical design of the third FnIII domain of tenascin-C.
    Peng Q; Zhuang S; Wang M; Cao Y; Khor Y; Li H
    J Mol Biol; 2009 Mar; 386(5):1327-42. PubMed ID: 19452631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Backbone dynamics of homologous fibronectin type III cell adhesion domains from fibronectin and tenascin.
    Carr PA; Erickson HP; Palmer AG
    Structure; 1997 Jul; 5(7):949-59. PubMed ID: 9261088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical unfolding of TNfn3: the unfolding pathway of a fnIII domain probed by protein engineering, AFM and MD simulation.
    Ng SP; Rounsevell RW; Steward A; Geierhaas CD; Williams PM; Paci E; Clarke J
    J Mol Biol; 2005 Jul; 350(4):776-89. PubMed ID: 15964016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two proteins with the same structure respond very differently to mutation: the role of plasticity in protein stability.
    Cota E; Hamill SJ; Fowler SB; Clarke J
    J Mol Biol; 2000 Sep; 302(3):713-25. PubMed ID: 10986129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Folding of beta-sandwich proteins: three-state transition of a fibronectin type III module.
    Cota E; Clarke J
    Protein Sci; 2000 Jan; 9(1):112-20. PubMed ID: 10739253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alterations of Nonconserved Residues Affect Protein Stability and Folding Dynamics through Charge-Charge Interactions.
    Tripathi S; Garcìa AE; Makhatadze GI
    J Phys Chem B; 2015 Oct; 119(41):13103-12. PubMed ID: 26413861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrophobic core fluidity of homologous protein domains: relation of side-chain dynamics to core composition and packing.
    Best RB; Rutherford TJ; Freund SM; Clarke J
    Biochemistry; 2004 Feb; 43(5):1145-55. PubMed ID: 14756550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single molecule force spectroscopy reveals a weakly populated microstate of the FnIII domains of tenascin.
    Cao Y; Li H
    J Mol Biol; 2006 Aug; 361(2):372-81. PubMed ID: 16842818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stabilization of the third fibronectin type III domain of human tenascin-C through minimal mutation and rational design.
    Gilbreth RN; Chacko BM; Grinberg L; Swers JS; Baca M
    Protein Eng Des Sel; 2014 Oct; 27(10):411-8. PubMed ID: 24996411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing residual structure and backbone dynamics on the milli- to picosecond timescale in a urea-denatured fibronectin type III domain.
    Meekhof AE; Freund SM
    J Mol Biol; 1999 Feb; 286(2):579-92. PubMed ID: 9973572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crosstalk between the protein surface and hydrophobic core in a core-swapped fibronectin type III domain.
    Billings KS; Best RB; Rutherford TJ; Clarke J
    J Mol Biol; 2008 Jan; 375(2):560-71. PubMed ID: 18035373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-consistent determination of the transition state for protein folding: application to a fibronectin type III domain.
    Paci E; Clarke J; Steward A; Vendruscolo M; Karplus M
    Proc Natl Acad Sci U S A; 2003 Jan; 100(2):394-9. PubMed ID: 12515856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.