These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 23268715)

  • 1. Spatially-explicit life cycle assessment of sun-to-wheels transportation pathways in the U.S.
    Geyer R; Stoms D; Kallaos J
    Environ Sci Technol; 2013 Jan; 47(2):1170-6. PubMed ID: 23268715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems.
    Adler PR; Del Grosso SJ; Parton WJ
    Ecol Appl; 2007 Apr; 17(3):675-91. PubMed ID: 17494388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Greater transportation energy and GHG offsets from bioelectricity than ethanol.
    Campbell JE; Lobell DB; Field CB
    Science; 2009 May; 324(5930):1055-7. PubMed ID: 19423776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A life-cycle comparison of alternative automobile fuels.
    MacLean HL; Lave LB; Lankey R; Joshi S
    J Air Waste Manag Assoc; 2000 Oct; 50(10):1769-79. PubMed ID: 11288305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy and emission benefits of alternative transportation liquid fuels derived from switchgrass: a fuel life cycle assessment.
    Wu M; Wu Y; Wang M
    Biotechnol Prog; 2006; 22(4):1012-24. PubMed ID: 16889378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Life cycle assessment of energy consumption and greenhouse gas emissions of cellulosic ethanol from corn stover].
    Tian W; Liao C; Li L; Zhao D
    Sheng Wu Gong Cheng Xue Bao; 2011 Mar; 27(3):516-25. PubMed ID: 21650036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tradeoffs and Synergies between biofuel production and large solar infrastructure in deserts.
    Ravi S; Lobell DB; Field CB
    Environ Sci Technol; 2014; 48(5):3021-30. PubMed ID: 24467248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Achieving deep cuts in the carbon intensity of U.S. automobile transportation by 2050: complementary roles for electricity and biofuels.
    Scown CD; Taptich M; Horvath A; McKone TE; Nazaroff WW
    Environ Sci Technol; 2013 Aug; 47(16):9044-52. PubMed ID: 23906086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Land-use and alternative bioenergy pathways for waste biomass.
    Campbell JE; Block E
    Environ Sci Technol; 2010 Nov; 44(22):8665-9. PubMed ID: 20883033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changing the renewable fuel standard to a renewable material standard: bioethylene case study.
    Posen ID; Griffin WM; Matthews HS; Azevedo IL
    Environ Sci Technol; 2015 Jan; 49(1):93-102. PubMed ID: 25478782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emissions savings in the corn-ethanol life cycle from feeding coproducts to livestock.
    Bremer VR; Liska AJ; Klopfenstein TJ; Erickson GE; Yang HS; Walters DT; Cassman KG
    J Environ Qual; 2010; 39(2):472-82. PubMed ID: 20176820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of potential life-cycle energy and greenhouse gas emission effects from using corn-based butanol as a transportation fuel.
    Wu M; Wang M; Liu J; Huo H
    Biotechnol Prog; 2008; 24(6):1204-14. PubMed ID: 19194933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biofuels that cause land-use change may have much larger non-GHG air quality emissions than fossil fuels.
    Tsao CC; Campbell JE; Mena-Carrasco M; Spak SN; Carmichael GR; Chen Y
    Environ Sci Technol; 2012 Oct; 46(19):10835-41. PubMed ID: 22924498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uncertainty in the Life Cycle Greenhouse Gas Emissions from U.S. Production of Three Biobased Polymer Families.
    Posen ID; Jaramillo P; Griffin WM
    Environ Sci Technol; 2016 Mar; 50(6):2846-58. PubMed ID: 26895173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Policy implications of uncertainty in modeled life-cycle greenhouse gas emissions of biofuels.
    Mullins KA; Griffin WM; Matthews HS
    Environ Sci Technol; 2011 Jan; 45(1):132-8. PubMed ID: 21121672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sun-to-Wheels Exergy Efficiencies for Bio-Ethanol and Photovoltaics.
    Williams E; Sekar A; Matteson S; Rittmann BE
    Environ Sci Technol; 2015 Jun; 49(11):6394-401. PubMed ID: 25938893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy intensity, life-cycle greenhouse gas emissions, and economic assessment of liquid biofuel pipelines.
    Strogen B; Horvath A; Zilberman D
    Bioresour Technol; 2013 Dec; 150():476-85. PubMed ID: 24119498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Densified biomass can cost-effectively mitigate greenhouse gas emissions and address energy security in thermal applications.
    Wilson TO; McNeal FM; Spatari S; G Abler D; Adler PR
    Environ Sci Technol; 2012 Jan; 46(2):1270-7. PubMed ID: 22107056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Life cycle energy and greenhouse gas emissions for an ethanol production process based on blue-green algae.
    Luo D; Hu Z; Choi DG; Thomas VM; Realff MJ; Chance RR
    Environ Sci Technol; 2010 Nov; 44(22):8670-7. PubMed ID: 20968295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relevance of emissions timing in biofuel greenhouse gases and climate impacts.
    Schwietzke S; Griffin WM; Matthews HS
    Environ Sci Technol; 2011 Oct; 45(19):8197-203. PubMed ID: 21866889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.