These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 23269503)

  • 1. Human intestinal transporter database: QSAR modeling and virtual profiling of drug uptake, efflux and interactions.
    Sedykh A; Fourches D; Duan J; Hucke O; Garneau M; Zhu H; Bonneau P; Tropsha A
    Pharm Res; 2013 Apr; 30(4):996-1007. PubMed ID: 23269503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective Fusion of Heterogeneous Classifiers for Predicting Substrates of Membrane Transporters.
    Shaikh N; Sharma M; Garg P
    J Chem Inf Model; 2017 Mar; 57(3):594-607. PubMed ID: 28228010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting intestinal transporters for optimizing oral drug absorption.
    Varma MV; Ambler CM; Ullah M; Rotter CJ; Sun H; Litchfield J; Fenner KS; El-Kattan AF
    Curr Drug Metab; 2010 Nov; 11(9):730-42. PubMed ID: 21189135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. QSAR modeling of the blood-brain barrier permeability for diverse organic compounds.
    Zhang L; Zhu H; Oprea TI; Golbraikh A; Tropsha A
    Pharm Res; 2008 Aug; 25(8):1902-14. PubMed ID: 18553217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of Drug or Food with Drug Transporters in Intestine and Liver.
    Nakanishi T; Tamai I
    Curr Drug Metab; 2015; 16(9):753-64. PubMed ID: 26630906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intestinal drug transporters: an overview.
    Estudante M; Morais JG; Soveral G; Benet LZ
    Adv Drug Deliv Rev; 2013 Oct; 65(10):1340-56. PubMed ID: 23041352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a Support Vector Machine-Based System to Predict Whether a Compound Is a Substrate of a Given Drug Transporter Using Its Chemical Structure.
    Ose A; Toshimoto K; Ikeda K; Maeda K; Yoshida S; Yamashita F; Hashida M; Ishida T; Akiyama Y; Sugiyama Y
    J Pharm Sci; 2016 Jul; 105(7):2222-30. PubMed ID: 27262201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of QSAR Equations for Virtual Screening.
    Spiegel J; Senderowitz H
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33105703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interplay of metabolism and transport in determining oral drug absorption and gut wall metabolism: a simulation assessment using the "Advanced Dissolution, Absorption, Metabolism (ADAM)" model.
    Darwich AS; Neuhoff S; Jamei M; Rostami-Hodjegan A
    Curr Drug Metab; 2010 Nov; 11(9):716-29. PubMed ID: 21189140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predictive QSAR modeling workflow, model applicability domains, and virtual screening.
    Tropsha A; Golbraikh A
    Curr Pharm Des; 2007; 13(34):3494-504. PubMed ID: 18220786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemometrics approach for the prediction of structure-activity relationship for membrane transporter bilitranslocase.
    Martinčič R; Venko K; Župerl Š; Novič M
    SAR QSAR Environ Res; 2014; 25(11):853-72. PubMed ID: 25337672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The use of pseudo-equilibrium constant affords improved QSAR models of human plasma protein binding.
    Zhu XW; Sedykh A; Zhu H; Liu SS; Tropsha A
    Pharm Res; 2013 Jul; 30(7):1790-8. PubMed ID: 23568522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developing Enhanced Blood-Brain Barrier Permeability Models: Integrating External Bio-Assay Data in QSAR Modeling.
    Wang W; Kim MT; Sedykh A; Zhu H
    Pharm Res; 2015 Sep; 32(9):3055-65. PubMed ID: 25862462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critical evaluation of human oral bioavailability for pharmaceutical drugs by using various cheminformatics approaches.
    Kim MT; Sedykh A; Chakravarti SK; Saiakhov RD; Zhu H
    Pharm Res; 2014 Apr; 31(4):1002-14. PubMed ID: 24306326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Properties of Drugs Interacting with SLC22 Transporters OAT1, OAT3, OCT1, and OCT2: A Machine-Learning Approach.
    Liu HC; Goldenberg A; Chen Y; Lun C; Wu W; Bush KT; Balac N; Rodriguez P; Abagyan R; Nigam SK
    J Pharmacol Exp Ther; 2016 Oct; 359(1):215-29. PubMed ID: 27488918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Animal models and intestinal drug transport.
    Glaeser H; Fromm MF
    Expert Opin Drug Metab Toxicol; 2008 Apr; 4(4):347-61. PubMed ID: 18433341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Critically Assessing the Predictive Power of QSAR Models for Human Liver Microsomal Stability.
    Liu R; Schyman P; Wallqvist A
    J Chem Inf Model; 2015 Aug; 55(8):1566-75. PubMed ID: 26170251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Modeling of Drug-Transporter Interactions-An International Transporter Consortium Perspective.
    Schlessinger A; Welch MA; van Vlijmen H; Korzekwa K; Swaan PW; Matsson P
    Clin Pharmacol Ther; 2018 Nov; 104(5):818-835. PubMed ID: 29981151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the intestinal bile acid transporters in bile acid and drug disposition.
    Dawson PA
    Handb Exp Pharmacol; 2011; (201):169-203. PubMed ID: 21103970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular properties associated with transporter-mediated drug disposition.
    Varma MV; Lai Y; El-Kattan AF
    Adv Drug Deliv Rev; 2017 Jul; 116():92-99. PubMed ID: 28554577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.