BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 23269673)

  • 1. Catalytic intermediates of inducible nitric-oxide synthase stabilized by the W188H mutation.
    Sabat J; Egawa T; Lu C; Stuehr DJ; Gerfen GJ; Rousseau DL; Yeh SR
    J Biol Chem; 2013 Mar; 288(9):6095-106. PubMed ID: 23269673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilization and characterization of a heme-oxy reaction intermediate in inducible nitric-oxide synthase.
    Tejero J; Biswas A; Wang ZQ; Page RC; Haque MM; Hemann C; Zweier JL; Misra S; Stuehr DJ
    J Biol Chem; 2008 Nov; 283(48):33498-507. PubMed ID: 18815130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A conserved tryptophan in nitric oxide synthase regulates heme-dioxy reduction by tetrahydrobiopterin.
    Wang ZQ; Wei CC; Ghosh S; Meade AL; Hemann C; Hille R; Stuehr DJ
    Biochemistry; 2001 Oct; 40(43):12819-25. PubMed ID: 11669618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissecting structural and electronic effects in inducible nitric oxide synthase.
    Hannibal L; Page RC; Haque MM; Bolisetty K; Yu Z; Misra S; Stuehr DJ
    Biochem J; 2015 Apr; 467(1):153-65. PubMed ID: 25608846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of tetrahydrobiopterin tunes its electron transfer to the heme-dioxy intermediate in nitric oxide synthase.
    Wei CC; Wang ZQ; Arvai AS; Hemann C; Hille R; Getzoff ED; Stuehr DJ
    Biochemistry; 2003 Feb; 42(7):1969-77. PubMed ID: 12590583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A tryptophan that modulates tetrahydrobiopterin-dependent electron transfer in nitric oxide synthase regulates enzyme catalysis by additional mechanisms.
    Wang ZQ; Wei CC; Santolini J; Panda K; Wang Q; Stuehr DJ
    Biochemistry; 2005 Mar; 44(12):4676-90. PubMed ID: 15779894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heme distortion modulated by ligand-protein interactions in inducible nitric-oxide synthase.
    Li D; Stuehr DJ; Yeh SR; Rousseau DL
    J Biol Chem; 2004 Jun; 279(25):26489-99. PubMed ID: 15066989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism and regulation of ferrous heme-nitric oxide (NO) oxidation in NO synthases.
    Tejero J; Hunt AP; Santolini J; Lehnert N; Stuehr DJ
    J Biol Chem; 2019 May; 294(19):7904-7916. PubMed ID: 30926606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of arginine guanidinium moiety in nitric-oxide synthase mechanism of oxygen activation.
    Giroud C; Moreau M; Mattioli TA; Balland V; Boucher JL; Xu-Li Y; Stuehr DJ; Santolini J
    J Biol Chem; 2010 Mar; 285(10):7233-45. PubMed ID: 19951943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A conserved tryptophan 457 modulates the kinetics and extent of N-hydroxy-L-arginine oxidation by inducible nitric-oxide synthase.
    Wang ZQ; Wei CC; Stuehr DJ
    J Biol Chem; 2002 Apr; 277(15):12830-7. PubMed ID: 11823464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of the properties of the heme-NO complexes in nitric-oxide synthase by hydrogen bonding to the proximal cysteine.
    Couture M; Adak S; Stuehr DJ; Rousseau DL
    J Biol Chem; 2001 Oct; 276(41):38280-8. PubMed ID: 11479310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pulsed EPR determination of the distance between heme iron and FMN centers in a human inducible nitric oxide synthase.
    Astashkin AV; Elmore BO; Fan W; Guillemette JG; Feng C
    J Am Chem Soc; 2010 Sep; 132(34):12059-67. PubMed ID: 20695464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The second step of the nitric oxide synthase reaction: evidence for ferric-peroxo as the active oxidant.
    Woodward JJ; Chang MM; Martin NI; Marletta MA
    J Am Chem Soc; 2009 Jan; 131(1):297-305. PubMed ID: 19128180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structures of the N(omega)-hydroxy-L-arginine complex of inducible nitric oxide synthase oxygenase dimer with active and inactive pterins.
    Crane BR; Arvai AS; Ghosh S; Getzoff ED; Stuehr DJ; Tainer JA
    Biochemistry; 2000 Apr; 39(16):4608-21. PubMed ID: 10769116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic and cryoreduction EPR studies of the hydroxylation of methylated N(ω)-hydroxy-L-arginine analogues by nitric oxide synthase from Geobacillus stearothermophilus.
    Davydov R; Labby KJ; Chobot SE; Lukoyanov DA; Crane BR; Silverman RB; Hoffman BM
    Biochemistry; 2014 Oct; 53(41):6511-9. PubMed ID: 25251261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A conserved Val to Ile switch near the heme pocket of animal and bacterial nitric-oxide synthases helps determine their distinct catalytic profiles.
    Wang ZQ; Wei CC; Sharma M; Pant K; Crane BR; Stuehr DJ
    J Biol Chem; 2004 Apr; 279(18):19018-25. PubMed ID: 14976216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of heme-thiolate in shaping the catalytic properties of a bacterial nitric-oxide synthase.
    Hannibal L; Somasundaram R; Tejero J; Wilson A; Stuehr DJ
    J Biol Chem; 2011 Nov; 286(45):39224-35. PubMed ID: 21921039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid kinetic studies link tetrahydrobiopterin radical formation to heme-dioxy reduction and arginine hydroxylation in inducible nitric-oxide synthase.
    Wei CC; Wang ZQ; Wang Q; Meade AL; Hemann C; Hille R; Stuehr DJ
    J Biol Chem; 2001 Jan; 276(1):315-9. PubMed ID: 11020389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of oxygen-induced radical intermediates in iNOS oxygenase domain with those from nNOS and eNOS.
    Berka V; Liu W; Wu G; Tsai AL
    J Inorg Biochem; 2014 Oct; 139():93-105. PubMed ID: 25016313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic regulation of the inducible nitric-oxide synthase by NO: comparison with the endothelial isoform.
    Gautier C; Négrerie M; Wang ZQ; Lambry JC; Stuehr DJ; Collin F; Martin JL; Slama-Schwok A
    J Biol Chem; 2004 Feb; 279(6):4358-65. PubMed ID: 14594819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.