BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 23269685)

  • 1. Role for phospholipid flippase complex of ATP8A1 and CDC50A proteins in cell migration.
    Kato U; Inadome H; Yamamoto M; Emoto K; Kobayashi T; Umeda M
    J Biol Chem; 2013 Feb; 288(7):4922-34. PubMed ID: 23269685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Critical role of the beta-subunit CDC50A in the stable expression, assembly, subcellular localization, and lipid transport activity of the P4-ATPase ATP8A2.
    Coleman JA; Molday RS
    J Biol Chem; 2011 May; 286(19):17205-16. PubMed ID: 21454556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid specific activation of the murine P4-ATPase Atp8a1 (ATPase II).
    Paterson JK; Renkema K; Burden L; Halleck MS; Schlegel RA; Williamson P; Daleke DL
    Biochemistry; 2006 Apr; 45(16):5367-76. PubMed ID: 16618126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryo-EM structures capture the transport cycle of the P4-ATPase flippase.
    Hiraizumi M; Yamashita K; Nishizawa T; Nureki O
    Science; 2019 Sep; 365(6458):1149-1155. PubMed ID: 31416931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The CDC50A extracellular domain is required for forming a functional complex with and chaperoning phospholipid flippases to the plasma membrane.
    Segawa K; Kurata S; Nagata S
    J Biol Chem; 2018 Feb; 293(6):2172-2182. PubMed ID: 29276178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrates of P4-ATPases: beyond aminophospholipids (phosphatidylserine and phosphatidylethanolamine).
    Shin HW; Takatsu H
    FASEB J; 2019 Mar; 33(3):3087-3096. PubMed ID: 30509129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of residues defining phospholipid flippase substrate specificity of type IV P-type ATPases.
    Baldridge RD; Graham TR
    Proc Natl Acad Sci U S A; 2012 Feb; 109(6):E290-8. PubMed ID: 22308393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phospholipid Flippase ATP10A Translocates Phosphatidylcholine and Is Involved in Plasma Membrane Dynamics.
    Naito T; Takatsu H; Miyano R; Takada N; Nakayama K; Shin HW
    J Biol Chem; 2015 Jun; 290(24):15004-17. PubMed ID: 25947375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphatidylserine flipping by the P4-ATPase ATP8A2 is electrogenic.
    Tadini-Buoninsegni F; Mikkelsen SA; Mogensen LS; Molday RS; Andersen JP
    Proc Natl Acad Sci U S A; 2019 Aug; 116(33):16332-16337. PubMed ID: 31371510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Essential Neo1 Protein from Budding Yeast Plays a Role in Establishing Aminophospholipid Asymmetry of the Plasma Membrane.
    Takar M; Wu Y; Graham TR
    J Biol Chem; 2016 Jul; 291(30):15727-39. PubMed ID: 27235400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of a human plasma membrane phospholipid flippase.
    Nakanishi H; Irie K; Segawa K; Hasegawa K; Fujiyoshi Y; Nagata S; Abe K
    J Biol Chem; 2020 Jul; 295(30):10180-10194. PubMed ID: 32493773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phospholipid flippase activities and substrate specificities of human type IV P-type ATPases localized to the plasma membrane.
    Takatsu H; Tanaka G; Segawa K; Suzuki J; Nagata S; Nakayama K; Shin HW
    J Biol Chem; 2014 Nov; 289(48):33543-56. PubMed ID: 25315773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heteromeric interactions required for abundance and subcellular localization of human CDC50 proteins and class 1 P4-ATPases.
    van der Velden LM; Wichers CG; van Breevoort AE; Coleman JA; Molday RS; Berger R; Klomp LW; van de Graaf SF
    J Biol Chem; 2010 Dec; 285(51):40088-96. PubMed ID: 20947505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CDC50A plays a key role in the uptake of the anticancer drug perifosine in human carcinoma cells.
    Muñoz-Martínez F; Torres C; Castanys S; Gamarro F
    Biochem Pharmacol; 2010 Sep; 80(6):793-800. PubMed ID: 20510206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ATP11C mutation is responsible for the defect in phosphatidylserine uptake in UPS-1 cells.
    Takada N; Takatsu H; Miyano R; Nakayama K; Shin HW
    J Lipid Res; 2015 Nov; 56(11):2151-7. PubMed ID: 26420878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of P4 ATPase Phospholipid Translocases (Flippases) in Human and Rat Pancreatic Beta Cells: THEIR GENE SILENCING INHIBITS INSULIN SECRETION.
    Ansari IU; Longacre MJ; Paulusma CC; Stoker SW; Kendrick MA; MacDonald MJ
    J Biol Chem; 2015 Sep; 290(38):23110-23. PubMed ID: 26240149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phospholipid flippases and Sfk1p, a novel regulator of phospholipid asymmetry, contribute to low permeability of the plasma membrane.
    Mioka T; Fujimura-Kamada K; Mizugaki N; Kishimoto T; Sano T; Nunome H; Williams DE; Andersen RJ; Tanaka K
    Mol Biol Cell; 2018 May; 29(10):1203-1218. PubMed ID: 29540528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ATP8B1 requires an accessory protein for endoplasmic reticulum exit and plasma membrane lipid flippase activity.
    Paulusma CC; Folmer DE; Ho-Mok KS; de Waart DR; Hilarius PM; Verhoeven AJ; Oude Elferink RP
    Hepatology; 2008 Jan; 47(1):268-78. PubMed ID: 17948906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conserved mechanism of phospholipid substrate recognition by the P4-ATPase Neo1 from Saccharomyces cerevisiae.
    Huang Y; Takar M; Best JT; Graham TR
    Biochim Biophys Acta Mol Cell Biol Lipids; 2020 Feb; 1865(2):158581. PubMed ID: 31786280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and functional analyses of disease-associated P4-ATPase phospholipid flippase variants in red blood cells.
    Liou AY; Molday LL; Wang J; Andersen JP; Molday RS
    J Biol Chem; 2019 Apr; 294(17):6809-6821. PubMed ID: 30850395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.