These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 23270265)
1. QTL and epistatic analyses of heterosis for seed yield and three yield component traits using molecular markers in rapeseed (Brassica napus L.). Li Y; Zhang X; Ma C; Shen J; Chen Q; Wang T; Fu T; Tu J Genetika; 2012 Oct; 48(10):1171-8. PubMed ID: 23270265 [TBL] [Abstract][Full Text] [Related]
2. QTL of three agronomically important traits and their interactions with environment in a European x Chinese rapeseed population. Zhao JY; Becker HC; Ding HD; Zhang YF; Zhang DQ; Ecke W Yi Chuan Xue Bao; 2005 Sep; 32(9):969-78. PubMed ID: 16201242 [TBL] [Abstract][Full Text] [Related]
3. Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping. Radoev M; Becker HC; Ecke W Genetics; 2008 Jul; 179(3):1547-58. PubMed ID: 18562665 [TBL] [Abstract][Full Text] [Related]
4. Partial Dominance, Overdominance and Epistasis as the Genetic Basis of Heterosis in Upland Cotton (Gossypium hirsutum L.). Liang Q; Shang L; Wang Y; Hua J PLoS One; 2015; 10(11):e0143548. PubMed ID: 26618635 [TBL] [Abstract][Full Text] [Related]
5. Epistasis together with partial dominance, over-dominance and QTL by environment interactions contribute to yield heterosis in upland cotton. Shang L; Liang Q; Wang Y; Zhao Y; Wang K; Hua J Theor Appl Genet; 2016 Jul; 129(7):1429-1446. PubMed ID: 27138784 [TBL] [Abstract][Full Text] [Related]
6. Partial Dominance, Overdominance, Epistasis and QTL by Environment Interactions Contribute to Heterosis in Two Upland Cotton Hybrids. Shang L; Wang Y; Cai S; Wang X; Li Y; Abduweli A; Hua J G3 (Bethesda); 2015 Dec; 6(3):499-507. PubMed ID: 26715091 [TBL] [Abstract][Full Text] [Related]
7. Genetic basis of heterosis for yield and yield components explored by QTL mapping across four genetic populations in upland cotton. Li C; Zhao T; Yu H; Li C; Deng X; Dong Y; Zhang F; Zhang Y; Mei L; Chen J; Zhu S BMC Genomics; 2018 Dec; 19(1):910. PubMed ID: 30541432 [TBL] [Abstract][Full Text] [Related]
8. Analysis of heterosis and quantitative trait loci for kernel shape related traits using triple testcross population in maize. Jiang L; Ge M; Zhao H; Zhang T PLoS One; 2015; 10(4):e0124779. PubMed ID: 25919458 [TBL] [Abstract][Full Text] [Related]
9. Mapping QTL for biomass yield and its components in rice (Oryza sativa L.). Liu GF; Yang J; Zhu J Yi Chuan Xue Bao; 2006 Jul; 33(7):607-16. PubMed ID: 16875318 [TBL] [Abstract][Full Text] [Related]
10. Genetic dissection of yield-related traits and mid-parent heterosis for those traits in maize (Zea mays L.). Yi Q; Liu Y; Hou X; Zhang X; Li H; Zhang J; Liu H; Hu Y; Yu G; Li Y; Wang Y; Huang Y BMC Plant Biol; 2019 Sep; 19(1):392. PubMed ID: 31500559 [TBL] [Abstract][Full Text] [Related]
11. [Study on location of QTLs controlling cocoon traits in silkworm]. Sima YH; Li B; Xu HM; Chen DX; Sun DB; Zhao AC; Lu C; Xiang ZH Yi Chuan Xue Bao; 2005 Jun; 32(6):625-32. PubMed ID: 16018190 [TBL] [Abstract][Full Text] [Related]
12. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Hua J; Xing Y; Wu W; Xu C; Sun X; Yu S; Zhang Q Proc Natl Acad Sci U S A; 2003 Mar; 100(5):2574-9. PubMed ID: 12604771 [TBL] [Abstract][Full Text] [Related]
13. Genetic dissection of heterosis using epistatic association mapping in a partial NCII mating design. Wen J; Zhao X; Wu G; Xiang D; Liu Q; Bu SH; Yi C; Song Q; Dunwell JM; Tu J; Zhang T; Zhang YM Sci Rep; 2015 Dec; 5():18376. PubMed ID: 26679476 [TBL] [Abstract][Full Text] [Related]
14. A dynamic and complex network regulates the heterosis of yield-correlated traits in rapeseed (Brassica napus L.). Shi J; Li R; Zou J; Long Y; Meng J PLoS One; 2011; 6(7):e21645. PubMed ID: 21747942 [TBL] [Abstract][Full Text] [Related]
15. Cumulative and different genetic effects contributed to yield heterosis using maternal and paternal backcross populations in Upland cotton. Ma L; Wang Y; Ijaz B; Hua J Sci Rep; 2019 Mar; 9(1):3984. PubMed ID: 30850683 [TBL] [Abstract][Full Text] [Related]
16. Genomewide mapping reveals a combination of different genetic effects causing the genetic basis of heterosis in two elite rice hybrids. Li L; He X; Zhang H; Wang Z; Sun C; Mou T; Li X; Zhang Y; Hu Z J Genet; 2015 Jun; 94(2):261-70. PubMed ID: 26174673 [TBL] [Abstract][Full Text] [Related]
17. Epistatic analysis of carcass characteristics in pigs reveals genomic interactions between quantitative trait loci attributable to additive and dominance genetic effects. Duthie C; Simm G; Doeschl-Wilson A; Kalm E; Knap PW; Roehe R J Anim Sci; 2010 Jul; 88(7):2219-34. PubMed ID: 20228239 [TBL] [Abstract][Full Text] [Related]
18. Genetic basis of heterosis explored by simple sequence repeat markers in a random-mated maize population. Lu H; Romero-Severson J; Bernardo R Theor Appl Genet; 2003 Aug; 107(3):494-502. PubMed ID: 12759730 [TBL] [Abstract][Full Text] [Related]
19. Comparative mapping of quantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape (Brassica napus L.). Basunanda P; Radoev M; Ecke W; Friedt W; Becker HC; Snowdon RJ Theor Appl Genet; 2010 Jan; 120(2):271-81. PubMed ID: 19707740 [TBL] [Abstract][Full Text] [Related]
20. QTL mapping based on the embryo and maternal genetic systems for non-essential amino acids in rapeseed (Brassica napus L.) meal. Wen J; Xu JF; Long Y; Wu JG; Xu HM; Meng JL; Shi CH J Sci Food Agric; 2016 Jan; 96(2):465-73. PubMed ID: 25645377 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]