BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 23270419)

  • 1. Structural and functional insights into the regulation of Helicobacter pylori arginase activity by an evolutionary nonconserved motif.
    Srivastava A; Meena SK; Alam M; Nayeem SM; Deep S; Sau AK
    Biochemistry; 2013 Jan; 52(3):508-19. PubMed ID: 23270419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insight into the role of a unique SSEHA motif in the activity and stability of Helicobacter pylori arginase.
    Srivastava A; Dwivedi N; Samanta U; Sau AK
    IUBMB Life; 2011 Nov; 63(11):1027-36. PubMed ID: 22031496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical studies on Helicobacter pylori arginase: insight into the difference in activity compared to other arginases.
    Srivastava A; Sau AK
    IUBMB Life; 2010 Dec; 62(12):906-15. PubMed ID: 21190293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An evolutionary non-conserved motif in Helicobacter pylori arginase mediates positioning of the loop containing the catalytic residue for catalysis.
    Dutta A; Sarkar D; Murarka P; Kausar T; Narayan S; Mazumder M; Ainavarapu SRK; Gourinath S; Sau AK
    Biochem J; 2021 Feb; 478(4):871-894. PubMed ID: 33480396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of a disulphide bond in Helicobacter pylori arginase.
    Srivastava A; Dwivedi N; Sau AK
    Biochem Biophys Res Commun; 2010 May; 395(3):348-51. PubMed ID: 20381458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arginase of Helicobacter Gastric Pathogens Uses a Unique Set of Non-catalytic Residues for Catalysis.
    George G; Kombrabail M; Raninga N; Sau AK
    Biophys J; 2017 Mar; 112(6):1120-1134. PubMed ID: 28355540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal-induced change in catalytic loop positioning in Helicobacter pylori arginase alters catalytic function.
    Dutta A; Mazumder M; Alam M; Gourinath S; Sau AK
    Biochem J; 2019 Dec; 476(23):3595-3614. PubMed ID: 31746966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural, enzymatic and biochemical studies on Helicobacter pylori arginase.
    Zhang X; Zhang J; Zhang R; Guo Y; Wu C; Mao X; Guo G; Zhang Y; Li D; Zou Q
    Int J Biochem Cell Biol; 2013 May; 45(5):995-1002. PubMed ID: 23454280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification and characterization of Helicobacter pylori arginase, RocF: unique features among the arginase superfamily.
    McGee DJ; Zabaleta J; Viator RJ; Testerman TL; Ochoa AC; Mendz GL
    Eur J Biochem; 2004 May; 271(10):1952-62. PubMed ID: 15128304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Illuminating the structure-function landscape of an evolutionary nonconserved motif in the arginases of Helicobacter gastric pathogens.
    Sarkar D; Sau AK
    IUBMB Life; 2023 Oct; 75(10):782-793. PubMed ID: 37086465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA binding activity of Helicobacter pylori DnaB helicase: the role of the N-terminal domain in modulating DNA binding activities.
    Nitharwal RG; Verma V; Subbarao N; Dasgupta S; Choudhury NR; Dhar SK
    FEBS J; 2012 Jan; 279(2):234-50. PubMed ID: 22074440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hot-spot analysis to dissect the functional protein-protein interface of a tRNA-modifying enzyme.
    Jakobi S; Nguyen TX; Debaene F; Metz A; Sanglier-Cianférani S; Reuter K; Klebe G
    Proteins; 2014 Oct; 82(10):2713-32. PubMed ID: 24975703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Helicobacter pylori UreE, a urease accessory protein: specific Ni(2+)- and Zn(2+)-binding properties and interaction with its cognate UreG.
    Bellucci M; Zambelli B; Musiani F; Turano P; Ciurli S
    Biochem J; 2009 Jul; 422(1):91-100. PubMed ID: 19476442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical and biophysical studies of Helicobacter pylori arginine decarboxylase, an enzyme important for acid adaptation in host.
    Alam M; Srivastava A; Dutta A; Sau AK
    IUBMB Life; 2018 Jul; 70(7):658-669. PubMed ID: 29684243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural studies of AntD: an N-Acyltransferase involved in the biosynthesis of D-Anthrose.
    Kubiak RL; Holden HM
    Biochemistry; 2012 Jan; 51(4):867-78. PubMed ID: 22220494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal ions-induced stability and function of bimetallic human arginase-I, a therapeutically important enzyme.
    Sadarangani V; Rahman S; Sau AK
    Biochim Biophys Acta Proteins Proteom; 2018 Nov; 1866(11):1153-1164. PubMed ID: 30282613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamic characterization of the DmsD binding site for the DmsA twin-arginine motif.
    Winstone TM; Turner RJ
    Biochemistry; 2015 Mar; 54(11):2040-51. PubMed ID: 25659414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intein lacking conserved C-terminal motif G retains controllable N-cleavage activity.
    Volkmann G; Liu XQ
    FEBS J; 2011 Sep; 278(18):3431-46. PubMed ID: 21787376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular modeling of Helicobacter pylori arginase and the inhibitor coordination interactions.
    Azizian H; Bahrami H; Pasalar P; Amanlou M
    J Mol Graph Model; 2010 Apr; 28(7):626-35. PubMed ID: 20080052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of a stability determinant on the edge of the Tet repressor four-helix bundle dimerization motif.
    Schubert P; Schnappinger D; Pfleiderer K; Hillen W
    Biochemistry; 2001 Mar; 40(11):3257-63. PubMed ID: 11258944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.