BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 23270578)

  • 1. Ultrasensitive electroanalytical tool for detecting, sizing, and evaluating the catalytic activity of platinum nanoparticles.
    Dasari R; Robinson DA; Stevenson KJ
    J Am Chem Soc; 2013 Jan; 135(2):570-3. PubMed ID: 23270578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical monitoring of single nanoparticle collisions at mercury-modified platinum ultramicroelectrodes.
    Dasari R; Tai K; Robinson DA; Stevenson KJ
    ACS Nano; 2014 May; 8(5):4539-46. PubMed ID: 24708257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential-controlled current responses from staircase to blip in single Pt nanoparticle collisions on a Ni ultramicroelectrode.
    Jung AR; Lee S; Joo JW; Shin C; Bae H; Moon SG; Kwon SJ
    J Am Chem Soc; 2015 Feb; 137(5):1762-5. PubMed ID: 25607323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of the redox indicator reaction on single-nanoparticle collisions at mercury- and bismuth-modified Pt ultramicroelectrodes.
    Dasari R; Walther B; Robinson DA; Stevenson KJ
    Langmuir; 2013 Dec; 29(48):15100-6. PubMed ID: 24188022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of hydrazine-induced aggregation on the electrochemical detection of platinum nanoparticles.
    Kleijn SE; Serrano-Bou B; Yanson AI; Koper MT
    Langmuir; 2013 Feb; 29(6):2054-64. PubMed ID: 23320415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observing iridium oxide (IrO(x)) single nanoparticle collisions at ultramicroelectrodes.
    Kwon SJ; Fan FR; Bard AJ
    J Am Chem Soc; 2010 Sep; 132(38):13165-7. PubMed ID: 20809574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunneling ultramicroelectrode: nanoelectrodes and nanoparticle collisions.
    Kim J; Kim BK; Cho SK; Bard AJ
    J Am Chem Soc; 2014 Jun; 136(23):8173-6. PubMed ID: 24857267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA analysis by application of Pt nanoparticle electrochemical amplification with single label response.
    Kwon SJ; Bard AJ
    J Am Chem Soc; 2012 Jul; 134(26):10777-9. PubMed ID: 22702801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Various Current Responses of Single Silver Nanoparticle Collisions on a Gold Ultramicroelectrode Depending on the Collision Conditions.
    Mun SK; Lee S; Kim DY; Kwon SJ
    Chem Asian J; 2017 Sep; 12(18):2434-2440. PubMed ID: 28662286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observation of Single Pt Nanoparticle Collisions: Enhanced Electrocatalytic Activity on a Pd Ultramicroelectrode.
    Shin C; Park TE; Park C; Kwon SJ
    Chemphyschem; 2016 Jun; 17(11):1637-41. PubMed ID: 26955784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pt Nanoparticle Collisions Detected by Electrocatalytic Amplification and Atomic Force Microscopy Imaging: Nanoparticle Collision Frequency, Adsorption, and Random Distribution at an Ultramicroelectrode Surface.
    Ortiz-Ledón CA; Zoski CG
    Anal Chem; 2017 Jun; 89(12):6424-6431. PubMed ID: 28541030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of diffusion-controlled stochastic events of iridium oxide single nanoparticle collisions by scanning electrochemical microscopy.
    Kwon SJ; Bard AJ
    J Am Chem Soc; 2012 Apr; 134(16):7102-8. PubMed ID: 22452267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current transients in single nanoparticle collision events.
    Xiao X; Fan FR; Zhou J; Bard AJ
    J Am Chem Soc; 2008 Dec; 130(49):16669-77. PubMed ID: 19554731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of mercury ions based on mercury-induced switching of enzyme-like activity of platinum/gold nanoparticles.
    Tseng CW; Chang HY; Chang JY; Huang CC
    Nanoscale; 2012 Nov; 4(21):6823-30. PubMed ID: 23011048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrocatalytic Amplification of Single Nanoparticle Collisions Using DNA-Modified Surfaces.
    Alligrant TM; Dasari R; Stevenson KJ; Crooks RM
    Langmuir; 2015 Oct; 31(42):11724-33. PubMed ID: 26457645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assemblies of polyvinylpyrrolidone-capped tetrahedral and spherical Pt nanoparticles in polyelectrolytes: hydrogen underpotential deposition and electrochemical characterization.
    Jaber S; Nasr P; Xin Y; Sleem F; Halaoui LI
    Phys Chem Chem Phys; 2013 Sep; 15(36):15223-33. PubMed ID: 23928658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined Blip and Staircase Response of Ascorbic Acid-Stabilized Copper Single Nanoparticle Collision by Electrocatalytic Glucose Oxidation.
    Choi YD; Jung SY; Kim KJ; Kwon SJ
    Chem Asian J; 2016 May; 11(9):1338-42. PubMed ID: 26910394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct Observation of the Collision of Single Pt Nanoparticles onto Single-Crystalline Gold Nanowire Electrodes.
    Shin C; Bae H; Kang M; Kim B; Kwon SJ
    Chem Asian J; 2016 Aug; 11(15):2181-7. PubMed ID: 27305586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical detection and sizing of colloidal ZnO nanoparticles.
    Perera N; Karunathilake N; Chhetri P; Alpuche-Aviles MA
    Anal Chem; 2015 Jan; 87(1):777-84. PubMed ID: 25417747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observation of single metal nanoparticle collisions by open circuit (mixed) potential changes at an ultramicroelectrode.
    Zhou H; Park JH; Fan FR; Bard AJ
    J Am Chem Soc; 2012 Aug; 134(32):13212-5. PubMed ID: 22839524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.