These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 23270578)
1. Ultrasensitive electroanalytical tool for detecting, sizing, and evaluating the catalytic activity of platinum nanoparticles. Dasari R; Robinson DA; Stevenson KJ J Am Chem Soc; 2013 Jan; 135(2):570-3. PubMed ID: 23270578 [TBL] [Abstract][Full Text] [Related]
2. Electrochemical monitoring of single nanoparticle collisions at mercury-modified platinum ultramicroelectrodes. Dasari R; Tai K; Robinson DA; Stevenson KJ ACS Nano; 2014 May; 8(5):4539-46. PubMed ID: 24708257 [TBL] [Abstract][Full Text] [Related]
3. Potential-controlled current responses from staircase to blip in single Pt nanoparticle collisions on a Ni ultramicroelectrode. Jung AR; Lee S; Joo JW; Shin C; Bae H; Moon SG; Kwon SJ J Am Chem Soc; 2015 Feb; 137(5):1762-5. PubMed ID: 25607323 [TBL] [Abstract][Full Text] [Related]
4. Influence of the redox indicator reaction on single-nanoparticle collisions at mercury- and bismuth-modified Pt ultramicroelectrodes. Dasari R; Walther B; Robinson DA; Stevenson KJ Langmuir; 2013 Dec; 29(48):15100-6. PubMed ID: 24188022 [TBL] [Abstract][Full Text] [Related]
5. Influence of hydrazine-induced aggregation on the electrochemical detection of platinum nanoparticles. Kleijn SE; Serrano-Bou B; Yanson AI; Koper MT Langmuir; 2013 Feb; 29(6):2054-64. PubMed ID: 23320415 [TBL] [Abstract][Full Text] [Related]
6. Observing iridium oxide (IrO(x)) single nanoparticle collisions at ultramicroelectrodes. Kwon SJ; Fan FR; Bard AJ J Am Chem Soc; 2010 Sep; 132(38):13165-7. PubMed ID: 20809574 [TBL] [Abstract][Full Text] [Related]
7. Tunneling ultramicroelectrode: nanoelectrodes and nanoparticle collisions. Kim J; Kim BK; Cho SK; Bard AJ J Am Chem Soc; 2014 Jun; 136(23):8173-6. PubMed ID: 24857267 [TBL] [Abstract][Full Text] [Related]
8. DNA analysis by application of Pt nanoparticle electrochemical amplification with single label response. Kwon SJ; Bard AJ J Am Chem Soc; 2012 Jul; 134(26):10777-9. PubMed ID: 22702801 [TBL] [Abstract][Full Text] [Related]
9. Various Current Responses of Single Silver Nanoparticle Collisions on a Gold Ultramicroelectrode Depending on the Collision Conditions. Mun SK; Lee S; Kim DY; Kwon SJ Chem Asian J; 2017 Sep; 12(18):2434-2440. PubMed ID: 28662286 [TBL] [Abstract][Full Text] [Related]
10. Observation of Single Pt Nanoparticle Collisions: Enhanced Electrocatalytic Activity on a Pd Ultramicroelectrode. Shin C; Park TE; Park C; Kwon SJ Chemphyschem; 2016 Jun; 17(11):1637-41. PubMed ID: 26955784 [TBL] [Abstract][Full Text] [Related]
11. Pt Nanoparticle Collisions Detected by Electrocatalytic Amplification and Atomic Force Microscopy Imaging: Nanoparticle Collision Frequency, Adsorption, and Random Distribution at an Ultramicroelectrode Surface. Ortiz-Ledón CA; Zoski CG Anal Chem; 2017 Jun; 89(12):6424-6431. PubMed ID: 28541030 [TBL] [Abstract][Full Text] [Related]
12. Analysis of diffusion-controlled stochastic events of iridium oxide single nanoparticle collisions by scanning electrochemical microscopy. Kwon SJ; Bard AJ J Am Chem Soc; 2012 Apr; 134(16):7102-8. PubMed ID: 22452267 [TBL] [Abstract][Full Text] [Related]
13. Current transients in single nanoparticle collision events. Xiao X; Fan FR; Zhou J; Bard AJ J Am Chem Soc; 2008 Dec; 130(49):16669-77. PubMed ID: 19554731 [TBL] [Abstract][Full Text] [Related]
14. Detection of mercury ions based on mercury-induced switching of enzyme-like activity of platinum/gold nanoparticles. Tseng CW; Chang HY; Chang JY; Huang CC Nanoscale; 2012 Nov; 4(21):6823-30. PubMed ID: 23011048 [TBL] [Abstract][Full Text] [Related]
15. Electrocatalytic Amplification of Single Nanoparticle Collisions Using DNA-Modified Surfaces. Alligrant TM; Dasari R; Stevenson KJ; Crooks RM Langmuir; 2015 Oct; 31(42):11724-33. PubMed ID: 26457645 [TBL] [Abstract][Full Text] [Related]
16. Assemblies of polyvinylpyrrolidone-capped tetrahedral and spherical Pt nanoparticles in polyelectrolytes: hydrogen underpotential deposition and electrochemical characterization. Jaber S; Nasr P; Xin Y; Sleem F; Halaoui LI Phys Chem Chem Phys; 2013 Sep; 15(36):15223-33. PubMed ID: 23928658 [TBL] [Abstract][Full Text] [Related]
17. Combined Blip and Staircase Response of Ascorbic Acid-Stabilized Copper Single Nanoparticle Collision by Electrocatalytic Glucose Oxidation. Choi YD; Jung SY; Kim KJ; Kwon SJ Chem Asian J; 2016 May; 11(9):1338-42. PubMed ID: 26910394 [TBL] [Abstract][Full Text] [Related]
18. Direct Observation of the Collision of Single Pt Nanoparticles onto Single-Crystalline Gold Nanowire Electrodes. Shin C; Bae H; Kang M; Kim B; Kwon SJ Chem Asian J; 2016 Aug; 11(15):2181-7. PubMed ID: 27305586 [TBL] [Abstract][Full Text] [Related]
19. Electrochemical detection and sizing of colloidal ZnO nanoparticles. Perera N; Karunathilake N; Chhetri P; Alpuche-Aviles MA Anal Chem; 2015 Jan; 87(1):777-84. PubMed ID: 25417747 [TBL] [Abstract][Full Text] [Related]
20. Observation of single metal nanoparticle collisions by open circuit (mixed) potential changes at an ultramicroelectrode. Zhou H; Park JH; Fan FR; Bard AJ J Am Chem Soc; 2012 Aug; 134(32):13212-5. PubMed ID: 22839524 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]