These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 23270923)

  • 1. Deriving correlated motions in proteins from X-ray structure refinement by using TLS parameters.
    Liu YY; Shih CH; Hwang JK; Chen CC
    Gene; 2013 Apr; 518(1):52-8. PubMed ID: 23270923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deriving protein dynamical properties from weighted protein contact number.
    Lin CP; Huang SW; Lai YL; Yen SC; Shih CH; Lu CH; Huang CC; Hwang JK
    Proteins; 2008 Aug; 72(3):929-35. PubMed ID: 18300253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the relationship between the protein structure and protein dynamics.
    Lu CH; Huang SW; Lai YL; Lin CP; Shih CH; Huang CC; Hsu WL; Hwang JK
    Proteins; 2008 Aug; 72(2):625-34. PubMed ID: 18247347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anisotropic fluctuations of amino acids in protein structures: insights from X-ray crystallography and elastic network models.
    Eyal E; Chennubhotla C; Yang LW; Bahar I
    Bioinformatics; 2007 Jul; 23(13):i175-84. PubMed ID: 17646294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of full-atomic and coarse-grained models to examine the molecular fluctuations of c-AMP dependent protein kinase.
    Keskin O
    J Biomol Struct Dyn; 2002 Dec; 20(3):333-45. PubMed ID: 12437372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluctuation and cross-correlation analysis of protein motions observed in nanosecond molecular dynamics simulations.
    Hünenberger PH; Mark AE; van Gunsteren WF
    J Mol Biol; 1995 Sep; 252(4):492-503. PubMed ID: 7563068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On deriving spatial protein structure from NMR or X-ray diffraction data.
    van Gunsteren WF; Gros P; Torda AE; Berendsen HJ; van Schaik RC
    Ciba Found Symp; 1991; 161():150-9; discussion 159-66. PubMed ID: 1814692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Normal mode refinement: crystallographic refinement of protein dynamic structure applied to human lysozyme.
    Kidera A; Inaka K; Matsushima M; Go N
    Biopolymers; 1992 Apr; 32(4):315-9. PubMed ID: 1623125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generalized correlation for biomolecular dynamics.
    Lange OF; Grubmüller H
    Proteins; 2006 Mar; 62(4):1053-61. PubMed ID: 16355416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amplitudes and directions of internal protein motions from a JAM analysis of 15N relaxation data.
    Kitao A; Wagner G
    Magn Reson Chem; 2006 Jul; 44 Spec No():S130-42. PubMed ID: 16823895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collective motions in proteins: a covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations.
    Ichiye T; Karplus M
    Proteins; 1991; 11(3):205-17. PubMed ID: 1749773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics simulation of E. coli ribonuclease H1 in solution: correlation with NMR and X-ray data and insights into biological function.
    Philippopoulos M; Lim C
    J Mol Biol; 1995 Dec; 254(4):771-92. PubMed ID: 7500349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient characterization of collective motions and interresidue correlations in proteins by low-resolution simulations.
    Bahar I; Erman B; Haliloglu T; Jernigan RL
    Biochemistry; 1997 Nov; 36(44):13512-23. PubMed ID: 9354619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal modeling of atomic fluctuations in protein crystal structures for weak crystal contact interactions.
    Hafner J; Zheng W
    J Chem Phys; 2010 Jan; 132(1):014111. PubMed ID: 20078153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From deep TLS validation to ensembles of atomic models built from elemental motions. II. Analysis of TLS refinement results by explicit interpretation.
    Afonine PV; Adams PD; Urzhumtsev A
    Acta Crystallogr D Struct Biol; 2018 Jul; 74(Pt 7):621-631. PubMed ID: 29968672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of large proteins through hierarchical levels of coarse-grained structures.
    Doruker P; Jernigan RL; Bahar I
    J Comput Chem; 2002 Jan; 23(1):119-27. PubMed ID: 11913377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT.
    Blanc E; Roversi P; Vonrhein C; Flensburg C; Lea SM; Bricogne G
    Acta Crystallogr D Biol Crystallogr; 2004 Dec; 60(Pt 12 Pt 1):2210-21. PubMed ID: 15572774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of alternative conformations by unrestrained refinement.
    Sobolev OV; Lunin VY
    Acta Crystallogr D Biol Crystallogr; 2012 Sep; 68(Pt 9):1118-27. PubMed ID: 22948912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ProMode: a database of normal mode analyses on protein molecules with a full-atom model.
    Wako H; Kato M; Endo S
    Bioinformatics; 2004 Sep; 20(13):2035-43. PubMed ID: 15059828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Critical evaluation of simple network models of protein dynamics and their comparison with crystallographic B-factors.
    Soheilifard R; Makarov DE; Rodin GJ
    Phys Biol; 2008 Jun; 5(2):026008. PubMed ID: 18577808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.