These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 23271130)
1. Green cocoons in silkworm Bombyx mori resulting from the quercetin 5-O-glucosyltransferase of UGT86, is an evolved response to dietary toxins. Xu X; Wang M; Wang Y; Sima Y; Zhang D; Li J; Yin W; Xu S Mol Biol Rep; 2013 May; 40(5):3631-9. PubMed ID: 23271130 [TBL] [Abstract][Full Text] [Related]
2. The silkworm Green b locus encodes a quercetin 5-O-glucosyltransferase that produces green cocoons with UV-shielding properties. Daimon T; Hirayama C; Kanai M; Ruike Y; Meng Y; Kosegawa E; Nakamura M; Tsujimoto G; Katsuma S; Shimada T Proc Natl Acad Sci U S A; 2010 Jun; 107(25):11471-6. PubMed ID: 20534444 [TBL] [Abstract][Full Text] [Related]
3. The expression of ecdysteroid UDP-glucosyltransferase enhances cocoon shell ratio by reducing ecdysteroid titre in last-instar larvae of silkworm, Bombyx mori. Shen G; Wu J; Wang Y; Liu H; Zhang H; Ma S; Peng C; Lin Y; Xia Q Sci Rep; 2018 Dec; 8(1):17710. PubMed ID: 30532027 [TBL] [Abstract][Full Text] [Related]
4. Microarray analysis of New Green Cocoon associated genes in silkworm, Bombyx mori. Lu YR; He SZ; Tong XL; Han MJ; Li CL; Li ZQ; Dai FY Insect Sci; 2016 Jun; 23(3):386-95. PubMed ID: 26936509 [TBL] [Abstract][Full Text] [Related]
5. Regioselective formation of quercetin 5-O-glucoside from orally administered quercetin in the silkworm, Bombyx mori. Hirayama C; Ono H; Tamura Y; Konno K; Nakamura M Phytochemistry; 2008 Mar; 69(5):1141-9. PubMed ID: 18164738 [TBL] [Abstract][Full Text] [Related]
7. The UDP-glucosyltransferase multigene family in Bombyx mori. Huang FF; Chai CL; Zhang Z; Liu ZH; Dai FY; Lu C; Xiang ZH BMC Genomics; 2008 Nov; 9():563. PubMed ID: 19038024 [TBL] [Abstract][Full Text] [Related]
8. A carotenoid-binding protein (CBP) plays a crucial role in cocoon pigmentation of silkworm (Bombyx mori) larvae. Tabunoki H; Higurashi S; Ninagi O; Fujii H; Banno Y; Nozaki M; Kitajima M; Miura N; Atsumi S; Tsuchida K; Maekawa H; Sato R FEBS Lett; 2004 Jun; 567(2-3):175-8. PubMed ID: 15178318 [TBL] [Abstract][Full Text] [Related]
9. Analysis of a silkworm F₁ hybrid with yellow cocoon generated by crossing two white-cocoon strains: further evidences for the roles of Cameo2 and CBP in formation of yellow cocoon. Chai C; Zhang Y; Sun W; Ding G; Wang W; Liu Y; Dai F; Lu C Gene; 2014 Jan; 534(1):119-23. PubMed ID: 24157262 [TBL] [Abstract][Full Text] [Related]
10. A CD36-related transmembrane protein is coordinated with an intracellular lipid-binding protein in selective carotenoid transport for cocoon coloration. Sakudoh T; Iizuka T; Narukawa J; Sezutsu H; Kobayashi I; Kuwazaki S; Banno Y; Kitamura A; Sugiyama H; Takada N; Fujimoto H; Kadono-Okuda K; Mita K; Tamura T; Yamamoto K; Tsuchida K J Biol Chem; 2010 Mar; 285(10):7739-51. PubMed ID: 20053988 [TBL] [Abstract][Full Text] [Related]
11. PTTH--a potential growth activator in silkworm, Bombyx mori L. for enhancing silk production. Trivedy K; Nair KS; Chinya PK Indian J Exp Biol; 2000 Sep; 38(9):936-41. PubMed ID: 12561955 [TBL] [Abstract][Full Text] [Related]
12. Deficiency of a pyrroline-5-carboxylate reductase produces the yellowish green cocoon 'Ryokuken' of the silkworm, Bombyx mori. Hirayama C; Mase K; Iizuka T; Takasu Y; Okada E; Yamamoto K Heredity (Edinb); 2018 May; 120(5):422-436. PubMed ID: 29472695 [TBL] [Abstract][Full Text] [Related]
13. Transient in vivo reporter gene assay for ecdysteroid action in the Bombyx mori silk gland. Takahashi M; Kikuchi K; Tomita S; Imanishi S; Nakahara Y; Kiuchi M; Kamimura M Comp Biochem Physiol B Biochem Mol Biol; 2003 Jul; 135(3):431-7. PubMed ID: 12831763 [TBL] [Abstract][Full Text] [Related]
14. [Structure and expression analysis of cbp gene in different natural colored-cocoon strains of Bombyx mori]. Niu YS; Chen YD; Xi J; Sima YH; Duan XM; Liang HL; Gan LP; Xu SQ Yi Chuan; 2010 Sep; 32(9):942-50. PubMed ID: 20870616 [TBL] [Abstract][Full Text] [Related]
15. Identification and analysis of the pigment composition and sources in the colored cocoon of the silkworm, Bombyx mori, by HPLC-DAD. Zhu L; Zhang YQ J Insect Sci; 2014 Feb; 14():31. PubMed ID: 25373178 [TBL] [Abstract][Full Text] [Related]
16. Mechanism of fluorescent cocoon sex identification for silkworms Bombyx mori. Zhang Y; Yu X; Shen W; Ma Y; Zhou L; Xu N; Yi S Sci China Life Sci; 2010 Nov; 53(11):1330-9. PubMed ID: 21046325 [TBL] [Abstract][Full Text] [Related]
17. Expression profiles of glutathione S-transferase genes in larval midgut of Bombyx mori exposed to insect hormones. Zou FM; Lou DS; Zhu YH; Wang SP; Jin BR; Gui ZZ Mol Biol Rep; 2011 Jan; 38(1):639-47. PubMed ID: 20364407 [TBL] [Abstract][Full Text] [Related]
18. [Comparison of chemical constituents of wild silkworm cocoon and domestic silkworm cocoon by UHPLC-MS technology]. Zhang Y; Dong Z; Zhao D; Li H; Wang L; Lin Y; Zhao P Sheng Wu Gong Cheng Xue Bao; 2019 Aug; 35(8):1546-1556. PubMed ID: 31441626 [TBL] [Abstract][Full Text] [Related]
19. Comparative analysis of iTRAQ-based proteomes for cocoons between the domestic silkworm (Bombyx mori) and wild silkworm (Bombyx mandarina). Dai ZJ; Sun W; Zhang Z J Proteomics; 2019 Feb; 192():366-373. PubMed ID: 30287406 [TBL] [Abstract][Full Text] [Related]
20. Insights into the effect on silkworm (Bombyx mori) cocooning and its potential mechanisms following non-lethal dose tebuconazole exposure. Li S; Jiang H; Qiao K; Gui W; Zhu G Chemosphere; 2019 Nov; 234():338-345. PubMed ID: 31228835 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]