BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 23271735)

  • 21. Erythroid differentiation in mouse erythroleukemia cells depends on Tmod3-mediated regulation of actin filament assembly into the erythroblast membrane skeleton.
    Ghosh A; Coffin M; West R; Fowler VM
    FASEB J; 2022 Mar; 36(3):e22220. PubMed ID: 35195928
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tropomyosin requires an intact N-terminal coiled coil to interact with tropomodulin.
    Greenfield NJ; Fowler VM
    Biophys J; 2002 May; 82(5):2580-91. PubMed ID: 11964245
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Calpain-mediated proteolysis of tropomodulin isoforms leads to thin filament elongation in dystrophic skeletal muscle.
    Gokhin DS; Tierney MT; Sui Z; Sacco A; Fowler VM
    Mol Biol Cell; 2014 Mar; 25(6):852-65. PubMed ID: 24430868
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of tropomodulin's leucine rich repeat domain in the formation of neurite-like processes.
    Guillaud L; Gray KT; Moroz N; Pantazis C; Pate E; Kostyukova AS
    Biochemistry; 2014 Apr; 53(16):2689-700. PubMed ID: 24746171
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tropomodulin binds two tropomyosins: a novel model for actin filament capping.
    Kostyukova AS; Choy A; Rapp BA
    Biochemistry; 2006 Oct; 45(39):12068-75. PubMed ID: 17002306
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tropomodulin 1-null mice have a mild spherocytic elliptocytosis with appearance of tropomodulin 3 in red blood cells and disruption of the membrane skeleton.
    Moyer JD; Nowak RB; Kim NE; Larkin SK; Peters LL; Hartwig J; Kuypers FA; Fowler VM
    Blood; 2010 Oct; 116(14):2590-9. PubMed ID: 20585041
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phosphorylation of tropomodulin1 contributes to the regulation of actin filament architecture in cardiac muscle.
    Bliss KT; Tsukada T; Novak SM; Dorovkov MV; Shah SP; Nworu C; Kostyukova AS; Gregorio CC
    FASEB J; 2014 Sep; 28(9):3987-95. PubMed ID: 24891520
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Localization of the binding interface between leiomodin-2 and α-tropomyosin.
    Colpan M; Tolkatchev D; Grover S; Helms GL; Cort JR; Moroz N; Kostyukova AS
    Biochim Biophys Acta; 2016 May; 1864(5):523-30. PubMed ID: 26873245
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mapping the tropomyosin isoform 5 binding site on human erythrocyte tropomodulin: further insights into E-Tmod/TM5 interaction.
    Vera C; Lao J; Hamelberg D; Sung LA
    Arch Biochem Biophys; 2005 Dec; 444(2):130-8. PubMed ID: 16297372
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [The capping protein on the slow-growing end of actin filament: erythrocyte tropomodulin].
    Zhang XL; Wen ZY; Yao WJ
    Sheng Li Ke Xue Jin Zhan; 2011 Feb; 42(1):27-31. PubMed ID: 21595184
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genomic organization of mouse and human erythrocyte tropomodulin genes encoding the pointed end capping protein for the actin filaments.
    Chu X; Thompson D; Yee LJ; Sung LA
    Gene; 2000 Oct; 256(1-2):271-81. PubMed ID: 11054557
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cytoplasmic nuclear transfer of the actin-capping protein tropomodulin.
    Kong KY; Kedes L
    J Biol Chem; 2004 Jul; 279(29):30856-64. PubMed ID: 15123707
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of residues within tropomodulin-1 responsible for its localization at the pointed ends of the actin filaments in cardiac myocytes.
    Tsukada T; Kotlyanskaya L; Huynh R; Desai B; Novak SM; Kajava AV; Gregorio CC; Kostyukova AS
    J Biol Chem; 2011 Jan; 286(3):2194-204. PubMed ID: 21078668
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mutations changing tropomodulin affinity for tropomyosin alter neurite formation and extension.
    Moroz N; Guillaud L; Desai B; Kostyukova AS
    PeerJ; 2013; 1():e7. PubMed ID: 23638401
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pointed-end capping by tropomodulin modulates actomyosin crossbridge formation in skeletal muscle fibers.
    Ochala J; Gokhin DS; Iwamoto H; Fowler VM
    FASEB J; 2014 Jan; 28(1):408-15. PubMed ID: 24072783
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterizing interaction forces between actin and proteins of the tropomodulin family reveals the presence of the N-terminal actin-binding site in leiomodin.
    Arslan B; Colpan M; Gray KT; Abu-Lail NI; Kostyukova AS
    Arch Biochem Biophys; 2018 Jan; 638():18-26. PubMed ID: 29223925
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tropomodulins Control the Balance between Protrusive and Contractile Structures by Stabilizing Actin-Tropomyosin Filaments.
    Kumari R; Jiu Y; Carman PJ; Tojkander S; Kogan K; Varjosalo M; Gunning PW; Dominguez R; Lappalainen P
    Curr Biol; 2020 Mar; 30(5):767-778.e5. PubMed ID: 32037094
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Leiomodin 3 and tropomodulin 4 have overlapping functions during skeletal myofibrillogenesis.
    Nworu CU; Kraft R; Schnurr DC; Gregorio CC; Krieg PA
    J Cell Sci; 2015 Jan; 128(2):239-50. PubMed ID: 25431137
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Systematic analysis of tropomodulin/tropomyosin interactions uncovers fine-tuned binding specificity of intrinsically disordered proteins.
    Uversky VN; Shah SP; Gritsyna Y; Hitchcock-DeGregori SE; Kostyukova AS
    J Mol Recognit; 2011; 24(4):647-55. PubMed ID: 21584876
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tropomodulin 3 binds to actin monomers.
    Fischer RS; Yarmola EG; Weber KL; Speicher KD; Speicher DW; Bubb MR; Fowler VM
    J Biol Chem; 2006 Nov; 281(47):36454-65. PubMed ID: 17012745
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.