These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
313 related articles for article (PubMed ID: 23272793)
21. Molecular biology and cellular mechanisms of Brugada and long QT syndromes in infants and young children. Antzelevitch C J Electrocardiol; 2001; 34 Suppl():177-81. PubMed ID: 11781953 [TBL] [Abstract][Full Text] [Related]
22. Evidence for a single nucleotide polymorphism in the KCNQ1 potassium channel that underlies susceptibility to life-threatening arrhythmias. Kubota T; Horie M; Takano M; Yoshida H; Takenaka K; Watanabe E; Tsuchiya T; Otani H; Sasayama S J Cardiovasc Electrophysiol; 2001 Nov; 12(11):1223-9. PubMed ID: 11761407 [TBL] [Abstract][Full Text] [Related]
23. Disease-associated mutations in KCNE potassium channel subunits (MiRPs) reveal promiscuous disruption of multiple currents and conservation of mechanism. Abbott GW; Goldstein SA FASEB J; 2002 Mar; 16(3):390-400. PubMed ID: 11874988 [TBL] [Abstract][Full Text] [Related]
25. Electromechanical window negativity in genotyped long-QT syndrome patients: relation to arrhythmia risk. ter Bekke RM; Haugaa KH; van den Wijngaard A; Bos JM; Ackerman MJ; Edvardsen T; Volders PG Eur Heart J; 2015 Jan; 36(3):179-86. PubMed ID: 25205533 [TBL] [Abstract][Full Text] [Related]
26. The genetic basis for cardiac dysrhythmias and the long QT syndrome. Vizgirda VM J Cardiovasc Nurs; 1999 Jul; 13(4):34-45. PubMed ID: 10386270 [TBL] [Abstract][Full Text] [Related]
27. Recent molecular insights from mutated IKS channels in cardiac arrhythmia. Dvir M; Peretz A; Haitin Y; Attali B Curr Opin Pharmacol; 2014 Apr; 15():74-82. PubMed ID: 24721657 [TBL] [Abstract][Full Text] [Related]
28. Exploring mutation specific beta blocker pharmacology of the pathogenic late sodium channel current from patient-specific pluripotent stem cell myocytes derived from long QT syndrome mutation carriers. Comollo TW; Zou X; Zhang C; Kesters D; Hof T; Sampson KJ; Kass RS Channels (Austin); 2022 Dec; 16(1):173-184. PubMed ID: 35949058 [TBL] [Abstract][Full Text] [Related]
29. Functional interactions between KCNE1 C-terminus and the KCNQ1 channel. Chen J; Zheng R; Melman YF; McDonald TV PLoS One; 2009; 4(4):e5143. PubMed ID: 19340287 [TBL] [Abstract][Full Text] [Related]
30. KCNE1 D85N polymorphism--a sex-specific modifier in type 1 long QT syndrome? Lahtinen AM; Marjamaa A; Swan H; Kontula K BMC Med Genet; 2011 Jan; 12():11. PubMed ID: 21244686 [TBL] [Abstract][Full Text] [Related]
31. The variant hERG/R148W associated with LQTS is a mutation that reduces current density on co-expression with the WT. Mechakra A; Vincent Y; Chevalier P; Millat G; Ficker E; Jastrzebski M; Poulin H; Pouliot V; Chahine M; Christé G Gene; 2014 Feb; 536(2):348-56. PubMed ID: 24334129 [TBL] [Abstract][Full Text] [Related]
32. N- and C-terminal KCNE1 mutations cause distinct phenotypes of long QT syndrome. Ohno S; Zankov DP; Yoshida H; Tsuji K; Makiyama T; Itoh H; Akao M; Hancox JC; Kita T; Horie M Heart Rhythm; 2007 Mar; 4(3):332-40. PubMed ID: 17341399 [TBL] [Abstract][Full Text] [Related]
34. [A novel KCNQ1 mutation in Chinese with congenital long QT syndrome]. Liang L; Du ZD; Cai LL; Wu JX; Zheng T; Qi TX Zhonghua Er Ke Za Zhi; 2003 Oct; 41(10):724-7. PubMed ID: 14731347 [TBL] [Abstract][Full Text] [Related]
35. Clinical and functional reappraisal of alleged type 5 long QT syndrome: Causative genetic variants in the KCNE1-encoded minK β-subunit. Garmany R; Giudicessi JR; Ye D; Zhou W; Tester DJ; Ackerman MJ Heart Rhythm; 2020 Jun; 17(6):937-944. PubMed ID: 32058015 [TBL] [Abstract][Full Text] [Related]
36. C-terminal HERG mutations: the role of hypokalemia and a KCNQ1-associated mutation in cardiac event occurrence. Berthet M; Denjoy I; Donger C; Demay L; Hammoude H; Klug D; Schulze-Bahr E; Richard P; Funke H; Schwartz K; Coumel P; Hainque B; Guicheney P Circulation; 1999 Mar; 99(11):1464-70. PubMed ID: 10086971 [TBL] [Abstract][Full Text] [Related]