These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 23272903)

  • 1. Modeling amyloids in bacteria.
    Villar-Piqué A; Ventura S
    Microb Cell Fact; 2012 Dec; 11():166. PubMed ID: 23272903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mammalian prion protein (PrP) forms conformationally different amyloid intracellular aggregates in bacteria.
    Macedo B; Sant'Anna R; Navarro S; Cordeiro Y; Ventura S
    Microb Cell Fact; 2015 Nov; 14():174. PubMed ID: 26536866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amyloids in bacterial inclusion bodies.
    de Groot NS; Sabate R; Ventura S
    Trends Biochem Sci; 2009 Aug; 34(8):408-16. PubMed ID: 19647433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solid-state NMR spectroscopy reveals that E. coli inclusion bodies of HET-s(218-289) are amyloids.
    Wasmer C; Benkemoun L; Sabaté R; Steinmetz MO; Coulary-Salin B; Wang L; Riek R; Saupe SJ; Meier BH
    Angew Chem Int Ed Engl; 2009; 48(26):4858-60. PubMed ID: 19472238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of Intracellular Amyloid Formation in Fixed and Live Bacteria Using Fluorescence Microscopy.
    Marín J; Aguilera P; Lagos R; Marcoleta A
    Methods Mol Biol; 2022; 2538():261-273. PubMed ID: 35951305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the amyloid bacterial inclusion bodies of the HET-s fungal prion.
    Sabaté R; Espargaró A; Saupe SJ; Ventura S
    Microb Cell Fact; 2009 Oct; 8():56. PubMed ID: 19863787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial Inclusion Bodies for Anti-Amyloid Drug Discovery: Current and Future Screening Methods.
    Caballero AB; Espargaró A; Pont C; Busquets MA; Estelrich J; Muñoz-Torrero D; Gamez P; Sabate R
    Curr Protein Pept Sci; 2019; 20(6):563-576. PubMed ID: 30924417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amyloids: from Pathogenesis to Function.
    Nizhnikov AA; Antonets KS; Inge-Vechtomov SG
    Biochemistry (Mosc); 2015 Sep; 80(9):1127-44. PubMed ID: 26555466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The prion-like RNA-processing protein HNRPDL forms inherently toxic amyloid-like inclusion bodies in bacteria.
    Navarro S; Marinelli P; Diaz-Caballero M; Ventura S
    Microb Cell Fact; 2015 Jul; 14():102. PubMed ID: 26160665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel, high-efficiency cellular model of fibrillar alpha-synuclein inclusions and the examination of mutations that inhibit amyloid formation.
    Waxman EA; Giasson BI
    J Neurochem; 2010 Apr; 113(2):374-88. PubMed ID: 20132485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrinsically disordered proteins in the formation of functional amyloids from bacteria to humans.
    Avni A; Swasthi HM; Majumdar A; Mukhopadhyay S
    Prog Mol Biol Transl Sci; 2019; 166():109-143. PubMed ID: 31521230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thioflavin-T excimer formation upon interaction with amyloid fibers.
    Sabate R; Rodriguez-Santiago L; Sodupe M; Saupe SJ; Ventura S
    Chem Commun (Camb); 2013 Jun; 49(51):5745-7. PubMed ID: 23687656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Yeast prions form infectious amyloid inclusion bodies in bacteria.
    Espargaró A; Villar-Piqué A; Sabaté R; Ventura S
    Microb Cell Fact; 2012 Jun; 11():89. PubMed ID: 22731490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescent dye ProteoStat to detect and discriminate intracellular amyloid-like aggregates in Escherichia coli.
    Navarro S; Ventura S
    Biotechnol J; 2014 Oct; 9(10):1259-66. PubMed ID: 25112199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical, cell biological, and genetic assays to analyze amyloid and prion aggregation in yeast.
    Alberti S; Halfmann R; Lindquist S
    Methods Enzymol; 2010; 470():709-34. PubMed ID: 20946833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amyloid nucleation and hierarchical assembly of Ure2p fibrils. Role of asparagine/glutamine repeat and nonrepeat regions of the prion domains.
    Jiang Y; Li H; Zhu L; Zhou JM; Perrett S
    J Biol Chem; 2004 Jan; 279(5):3361-9. PubMed ID: 14610069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prions and Non-infectious Amyloids of Mammals - Similarities and Differences.
    Galkin AP; Velizhanina ME; Sopova YV; Shenfeld AA; Zadorsky SP
    Biochemistry (Mosc); 2018 Oct; 83(10):1184-1195. PubMed ID: 30472956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptide sequences converting polyglutamine into a prion in yeast.
    Odani W; Urata K; Okuda M; Okuma S; Koyama H; Pack CG; Fujiwara K; Nojima T; Kinjo M; Kawai-Noma S; Taguchi H
    FEBS J; 2015 Feb; 282(3):477-90. PubMed ID: 25406629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amyloids, prions and the inherent infectious nature of misfolded protein aggregates.
    Soto C; Estrada L; Castilla J
    Trends Biochem Sci; 2006 Mar; 31(3):150-5. PubMed ID: 16473510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amyloids and prions in the light of evolution.
    Galkin AP; Sysoev EI; Valina AA
    Curr Genet; 2023 Dec; 69(4-6):189-202. PubMed ID: 37165144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.