BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 23272994)

  • 1. Self-limiting lithiation in silicon nanowires.
    Liu XH; Fan F; Yang H; Zhang S; Huang JY; Zhu T
    ACS Nano; 2013 Feb; 7(2):1495-503. PubMed ID: 23272994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stress effects on the initial lithiation of crystalline silicon nanowires: reactive molecular dynamics simulations using ReaxFF.
    Ostadhossein A; Cubuk ED; Tritsaris GA; Kaxiras E; Zhang S; van Duin AC
    Phys Chem Chem Phys; 2015 Feb; 17(5):3832-40. PubMed ID: 25559797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-coating regulated lithiation kinetics and degradation in silicon nanowires for lithium ion battery.
    Luo L; Yang H; Yan P; Travis JJ; Lee Y; Liu N; Piper DM; Lee SH; Zhao P; George SM; Zhang JG; Cui Y; Zhang S; Ban C; Wang CM
    ACS Nano; 2015 May; 9(5):5559-66. PubMed ID: 25893684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrafast electrochemical lithiation of individual Si nanowire anodes.
    Liu XH; Zhang LQ; Zhong L; Liu Y; Zheng H; Wang JW; Cho JH; Dayeh SA; Picraux ST; Sullivan JP; Mao SX; Ye ZZ; Huang JY
    Nano Lett; 2011 Jun; 11(6):2251-8. PubMed ID: 21563798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pair distribution function analysis and solid state NMR studies of silicon electrodes for lithium ion batteries: understanding the (de)lithiation mechanisms.
    Key B; Morcrette M; Tarascon JM; Grey CP
    J Am Chem Soc; 2011 Jan; 133(3):503-12. PubMed ID: 21171582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First principles simulations of the electrochemical lithiation and delithiation of faceted crystalline silicon.
    Chan MK; Wolverton C; Greeley JP
    J Am Chem Soc; 2012 Sep; 134(35):14362-74. PubMed ID: 22817384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ X-ray diffraction studies of (de)lithiation mechanism in silicon nanowire anodes.
    Misra S; Liu N; Nelson J; Hong SS; Cui Y; Toney MF
    ACS Nano; 2012 Jun; 6(6):5465-73. PubMed ID: 22558938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lithiation-induced fracture of silicon nanowires observed by in-situ scanning electron microscopy.
    Wei CY; Sun YT; Liu YL; Liu TR; Wen CY
    Nanotechnology; 2020 Sep; 31(36):364001. PubMed ID: 32438349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size-dependent fracture of silicon nanoparticles during lithiation.
    Liu XH; Zhong L; Huang S; Mao SX; Zhu T; Huang JY
    ACS Nano; 2012 Feb; 6(2):1522-31. PubMed ID: 22217200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lithium insertion in nanostructured TiO(2)(B) architectures.
    Dylla AG; Henkelman G; Stevenson KJ
    Acc Chem Res; 2013 May; 46(5):1104-12. PubMed ID: 23425042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sandwich-lithiation and longitudinal crack in amorphous silicon coated on carbon nanofibers.
    Wang JW; Liu XH; Zhao K; Palmer A; Patten E; Burton D; Mao SX; Suo Z; Huang JY
    ACS Nano; 2012 Oct; 6(10):9158-67. PubMed ID: 22984869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative fracture strength and plasticity measurements of lithiated silicon nanowires by in situ TEM tensile experiments.
    Kushima A; Huang JY; Li J
    ACS Nano; 2012 Nov; 6(11):9425-32. PubMed ID: 23025575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ TEM of two-phase lithiation of amorphous silicon nanospheres.
    McDowell MT; Lee SW; Harris JT; Korgel BA; Wang C; Nix WD; Cui Y
    Nano Lett; 2013 Feb; 13(2):758-64. PubMed ID: 23323680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-phase electrochemical lithiation in amorphous silicon.
    Wang JW; He Y; Fan F; Liu XH; Xia S; Liu Y; Harris CT; Li H; Huang JY; Mao SX; Zhu T
    Nano Lett; 2013 Feb; 13(2):709-15. PubMed ID: 23323743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anisotropic lithiation onset in silicon nanoparticle anode revealed by in situ graphene liquid cell electron microscopy.
    Yuk JM; Seo HK; Choi JW; Lee JY
    ACS Nano; 2014 Jul; 8(7):7478-85. PubMed ID: 24980889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes.
    Wang W; Kumta PN
    ACS Nano; 2010 Apr; 4(4):2233-41. PubMed ID: 20364846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct observation of Sn crystal growth during the lithiation and delithiation processes of SnO(2) nanowires.
    Zhang LQ; Liu XH; Perng YC; Cho J; Chang JP; Mao SX; Ye ZZ; Huang JY
    Micron; 2012 Nov; 43(11):1127-33. PubMed ID: 22770619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ transmission electron microscopy study of electrochemical lithiation and delithiation cycling of the conversion anode RuO2.
    Gregorczyk KE; Liu Y; Sullivan JP; Rubloff GW
    ACS Nano; 2013 Jul; 7(7):6354-60. PubMed ID: 23782274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solid Electrolyte Interphase Growth and Capacity Loss in Silicon Electrodes.
    Michan AL; Divitini G; Pell AJ; Leskes M; Ducati C; Grey CP
    J Am Chem Soc; 2016 Jun; 138(25):7918-31. PubMed ID: 27232540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and Electrochemical Investigation during the First Charging Cycles of Silicon Microwire Array Anodes for High Capacity Lithium Ion Batteries.
    Quiroga-González E; Carstensen J; Föll H
    Materials (Basel); 2013 Feb; 6(2):626-636. PubMed ID: 28809331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.