These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 23272994)

  • 41. Lithium ion battery peformance of silicon nanowires with carbon skin.
    Bogart TD; Oka D; Lu X; Gu M; Wang C; Korgel BA
    ACS Nano; 2014 Jan; 8(1):915-22. PubMed ID: 24313423
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nanofibrillar Si Helices for Low-Stress, High-Capacity Li
    Antartis DA; Wang H; Tang CY; Chew HB; Dillon SJ; Chasiotis I
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):11715-11721. PubMed ID: 30860348
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Surface Coating Constraint Induced Self-Discharging of Silicon Nanoparticles as Anodes for Lithium Ion Batteries.
    Luo L; Zhao P; Yang H; Liu B; Zhang JG; Cui Y; Yu G; Zhang S; Wang CM
    Nano Lett; 2015 Oct; 15(10):7016-22. PubMed ID: 26414120
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Lithium transport at silicon thin film: barrier for high-rate capability anode.
    Peng B; Cheng F; Tao Z; Chen J
    J Chem Phys; 2010 Jul; 133(3):034701. PubMed ID: 20649344
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nanowire Heterostructures Comprising Germanium Stems and Silicon Branches as High-Capacity Li-Ion Anodes with Tunable Rate Capability.
    Kennedy T; Bezuidenhout M; Palaniappan K; Stokes K; Brandon M; Ryan KM
    ACS Nano; 2015 Jul; 9(7):7456-65. PubMed ID: 26125966
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Novel size and surface oxide effects in silicon nanowires as lithium battery anodes.
    McDowell MT; Lee SW; Ryu I; Wu H; Nix WD; Choi JW; Cui Y
    Nano Lett; 2011 Sep; 11(9):4018-25. PubMed ID: 21827158
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Reduction mechanisms of ethylene carbonate on si anodes of lithium-ion batteries: effects of degree of lithiation and nature of exposed surface.
    Martinez de la Hoz JM; Leung K; Balbuena PB
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):13457-65. PubMed ID: 24224826
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Kinetics of initial lithiation of crystalline silicon electrodes of lithium-ion batteries.
    Pharr M; Zhao K; Wang X; Suo Z; Vlassak JJ
    Nano Lett; 2012 Sep; 12(9):5039-47. PubMed ID: 22889293
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Minimized Volume Expansion in Hierarchical Porous Silicon upon Lithiation.
    Dai F; Yi R; Yang H; Zhao Y; Luo L; Gordin ML; Sohn H; Chen S; Wang C; Zhang S; Wang D
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13257-13263. PubMed ID: 30810309
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Atomic-scale observation of lithiation reaction front in nanoscale SnO2 materials.
    Nie A; Gan LY; Cheng Y; Asayesh-Ardakani H; Li Q; Dong C; Tao R; Mashayek F; Wang HT; Schwingenschlögl U; Klie RF; Yassar RS
    ACS Nano; 2013 Jul; 7(7):6203-11. PubMed ID: 23730945
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Size dependent behavior of Fe
    Bock DC; Pelliccione CJ; Zhang W; Timoshenko J; Knehr KW; West AC; Wang F; Li Y; Frenkel AI; Takeuchi ES; Takeuchi KJ; Marschilok AC
    Phys Chem Chem Phys; 2017 Aug; 19(31):20867-20880. PubMed ID: 28745341
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In situ transmission electron microscopy observation of the conversion mechanism of Fe2O3/graphene anode during lithiation-delithiation processes.
    Su Q; Xie D; Zhang J; Du G; Xu B
    ACS Nano; 2013 Oct; 7(10):9115-21. PubMed ID: 24015669
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Single nanowire electrode electrochemistry of silicon anode by in situ atomic force microscopy: solid electrolyte interphase growth and mechanical properties.
    Liu XR; Deng X; Liu RR; Yan HJ; Guo YG; Wang D; Wan LJ
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):20317-23. PubMed ID: 25380518
    [TBL] [Abstract][Full Text] [Related]  

  • 54. ToF-SIMS Li Depth Profiling of Pure and Methylated Amorphous Silicon Electrodes After Their Partial Lithiation.
    Feng Y; Koo BM; Seyeux A; Światowska J; Henry de Villeneuve C; Rosso M; Ozanam F
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):35716-35725. PubMed ID: 35882598
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fabrication of ordered NiO coated Si nanowire array films as electrodes for a high performance lithium ion battery.
    Qiu MC; Yang LW; Qi X; Li J; Zhong JX
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3614-8. PubMed ID: 21077626
    [TBL] [Abstract][Full Text] [Related]  

  • 56. One-Dimensional Silicon Nanostructures for Li Ion Batteries.
    Song T; Hu L; Paik U
    J Phys Chem Lett; 2014 Feb; 5(4):720-31. PubMed ID: 26270843
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Kinetics and fracture resistance of lithiated silicon nanostructure pairs controlled by their mechanical interaction.
    Lee SW; Lee HW; Ryu I; Nix WD; Gao H; Cui Y
    Nat Commun; 2015 Jun; 6():7533. PubMed ID: 26112834
    [TBL] [Abstract][Full Text] [Related]  

  • 58. High-Performance Lithiated SiO
    Meng Q; Li G; Yue J; Xu Q; Yin YX; Guo YG
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):32062-32068. PubMed ID: 31393103
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In Situ Study of Silicon Electrode Lithiation with X-ray Reflectivity.
    Cao C; Steinrück HG; Shyam B; Stone KH; Toney MF
    Nano Lett; 2016 Dec; 16(12):7394-7401. PubMed ID: 27783514
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The mixing mechanism during lithiation of Si negative electrode in Li-ion batteries: an ab initio molecular dynamics study.
    Johari P; Qi Y; Shenoy VB
    Nano Lett; 2011 Dec; 11(12):5494-500. PubMed ID: 22077884
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.