BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 23273113)

  • 1. Microwrinkled conducting polymer interface for anisotropic multicellular alignment.
    Greco F; Fujie T; Ricotti L; Taccola S; Mazzolai B; Mattoli V
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):573-84. PubMed ID: 23273113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topographical and Electrical Stimulation of Neuronal Cells through Microwrinkled Conducting Polymer Biointerfaces.
    Bonisoli A; Marino A; Ciofani G; Greco F
    Macromol Biosci; 2017 Nov; 17(11):. PubMed ID: 28815971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micropatterned polyelectrolyte nanofilms promote alignment and myogenic differentiation of C2C12 cells in standard growth media.
    Palamà IE; D'Amone S; Coluccia AM; Gigli G
    Biotechnol Bioeng; 2013 Feb; 110(2):586-96. PubMed ID: 22886558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications.
    Sarkar S; Lee GY; Wong JY; Desai TA
    Biomaterials; 2006 Sep; 27(27):4775-82. PubMed ID: 16725195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of alignment and differentiation of skeletal myoblasts by submicron ridges/grooves surface structure.
    Wang PY; Yu HT; Tsai WB
    Biotechnol Bioeng; 2010 Jun; 106(2):285-94. PubMed ID: 20148416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of nano- and micro-scale topological features on alignment of muscle cells and commitment of myogenic differentiation.
    Jana S; Leung M; Chang J; Zhang M
    Biofabrication; 2014 Sep; 6(3):035012. PubMed ID: 24876344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Creating conductive structures for cell growth: growth and alignment of myogenic cell types on polythiophenes.
    Breukers RD; Gilmore KJ; Kita M; Wagner KK; Higgins MJ; Moulton SE; Clark GM; Officer DL; Kapsa RM; Wallace GG
    J Biomed Mater Res A; 2010 Oct; 95(1):256-68. PubMed ID: 20597125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradable microgrooved polymeric surfaces obtained by photolithography for skeletal muscle cell orientation and myotube development.
    Altomare L; Gadegaard N; Visai L; Tanzi MC; Farè S
    Acta Biomater; 2010 Jun; 6(6):1948-57. PubMed ID: 20040385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrically conductive nanofibers with highly oriented structures and their potential application in skeletal muscle tissue engineering.
    Chen MC; Sun YC; Chen YH
    Acta Biomater; 2013 Mar; 9(3):5562-72. PubMed ID: 23099301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proliferation and skeletal myotube formation capability of C2C12 and H9c2 cells on isotropic and anisotropic electrospun nanofibrous PHB scaffolds.
    Ricotti L; Polini A; Genchi GG; Ciofani G; Iandolo D; Vazão H; Mattoli V; Ferreira L; Menciassi A; Pisignano D
    Biomed Mater; 2012 Jun; 7(3):035010. PubMed ID: 22477772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of static and dynamic patterned co-cultures using microfabricated parylene-C stencils.
    Wright D; Rajalingam B; Selvarasah S; Dokmeci MR; Khademhosseini A
    Lab Chip; 2007 Oct; 7(10):1272-9. PubMed ID: 17896010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel PGS/PCL electrospun fiber mats with patterned topographical features for cardiac patch applications.
    Tallawi M; Dippold D; Rai R; D'Atri D; Roether JA; Schubert DW; Rosellini E; Engel FB; Boccaccini AR
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():569-76. PubMed ID: 27612749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid fabrication and chemical patterning of polymer microstructures and their applications as a platform for cell cultures.
    Faid K; Voicu R; Bani-Yaghoub M; Tremblay R; Mealing G; Py C; Barjovanu R
    Biomed Microdevices; 2005 Sep; 7(3):179-84. PubMed ID: 16133804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical regulation of cellular adhesion onto honeycomb-patterned porous scaffolds by altering the elasticity of material surfaces.
    Kawano T; Nakamichi Y; Fujinami S; Nakajima K; Yabu H; Shimomura M
    Biomacromolecules; 2013 Apr; 14(4):1208-13. PubMed ID: 23510479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteoblast alignment, elongation and migration on grooved polystyrene surfaces patterned by Langmuir-Blodgett lithography.
    Lenhert S; Meier MB; Meyer U; Chi L; Wiesmann HP
    Biomaterials; 2005 Feb; 26(5):563-70. PubMed ID: 15276364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergic effects of nanofiber alignment and electroactivity on myoblast differentiation.
    Ku SH; Lee SH; Park CB
    Biomaterials; 2012 Sep; 33(26):6098-104. PubMed ID: 22681977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The construction of three-dimensional micro-fluidic scaffolds of biodegradable polymers by solvent vapor based bonding of micro-molded layers.
    Ryu W; Min SW; Hammerick KE; Vyakarnam M; Greco RS; Prinz FB; Fasching RJ
    Biomaterials; 2007 Feb; 28(6):1174-84. PubMed ID: 17126395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photolithographic patterning of C2C12 myotubes using vitronectin as growth substrate in serum-free medium.
    Molnar P; Wang W; Natarajan A; Rumsey JW; Hickman JJ
    Biotechnol Prog; 2007; 23(1):265-8. PubMed ID: 17269697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical stimulation of myoblast proliferation and differentiation on aligned nanostructured conductive polymer platforms.
    Quigley AF; Razal JM; Kita M; Jalili R; Gelmi A; Penington A; Ovalle-Robles R; Baughman RH; Clark GM; Wallace GG; Kapsa RM
    Adv Healthc Mater; 2012 Nov; 1(6):801-8. PubMed ID: 23184836
    [No Abstract]   [Full Text] [Related]  

  • 20. Patterned free-standing conductive nanofilms for ultraconformable circuits and smart interfaces.
    Greco F; Zucca A; Taccola S; Mazzolai B; Mattoli V
    ACS Appl Mater Interfaces; 2013 Oct; 5(19):9461-9. PubMed ID: 23978229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.